147 research outputs found

    Tree species diversity, distribution and population structure in a tropical dry deciduous forests of Chhatisgarh, India

    Get PDF
    Tree species diversity, distribution and population structure of tropical forests of Bharnawapara wildlife sanctuary was investigated. The study analyzed the structure of a tropical dry deciduous forest in Chhatisgarh at different sites i.e. closed natural forest, open natural forest and plantation forests of teak. The study was conducted by laying 30 quadrats, each 10 m × 10 m in size at different sites. In total, 246 trees belonging to 28 species of 17 families were recorded from 0.3 ha sampling area. Density ranged between 520 to 990 trees ha-1 subsequently, basal area ranged between 21.50 to 47.30 m2 ha-1. The dominant tree species was Cleistanthus collinus with an importance value index (IVI) of 57.70. Other important species were Terminalia tometosa (IVI 47.10), Lagerstroemia parviflora (36.92), Diospyros melanoxylon (28.42) and Madhuca indica(26.03). The Shannon-Wiener index (H?) ranged between 0.19 to 3.35 and Simpson’s index (C) between 0.12 to 0.95 indicating high tree species diversity of tropical dry deciduous forests. It is evident from the study that natural forest has an edge over plantation forest in terms of species diversity, dominance and richness. Tree species diversity, distribution and population structure provide baseline information for conservation and management of tropical dry deciduous forests in India. Efforts are needed to conserve the natural forest for their diversity and existence. They can also be supplemented with plantation forests to lower the biotic pressure

    Savannization of dry tropical forest increases carbon flux relative to storage

    Get PDF
    A study of dry tropical forest and savanna derived from it suggests that, although carbon stored in the savanna vegetation was less than half of that in the forest, carbon input through net primary production was similar. The savanna, drawing upon biodiversity resources, was able to maintain the same level of ecosystem productivity as the forest through species replacement. Belowground parts contributed more to carbon storage and flux in savanna than in forest, but carbon stored in soil remained far lower in savanna. Our studies indicate that conversion of dry tropical forest into savanna increases carbon flux relative to storage. This has implications for global carbon budget studies

    MRD: a microsatellite repeats database for prokaryotic and eukaryotic genomes

    Get PDF
    MRD is a database system to access the microsatellite repeats information of genomes such as archea, eubacteria, and other eukaryotic genomes whose sequence information is available in public domains. MRD stores information about simple tandemly repeated k-mer sequences where k= 1 to 6, i.e. monomer to hexamer. The web interface allows the users to search for the repeat of their interest and to know about the association of the repeat with genes and genomic regions in the specific organism. The data contains the abundance and distribution of microsatellites in the coding and non-coding regions of the genome. The exact location of repeats with respect to genomic regions of interest (such as UTR, exon, intron or intergenic regions) whichever is applicable to organism is highlighted. MRD is available on the World Wide Web at http://www.ccmb.res.in/mrd webcite and/or http://www.ingenovis.com/mrd webcite. The database is designed as an open-ended system to accommodate the microsatellite repeats information of other genomes whose complete sequences will be available in future through public domain

    Triplet repeats in human genome: distribution and their association with genes and other genomic regions

    Get PDF
    Motivation: Simple sequence repeats (SSRs) or microsatellite repeats are found abundantly in many prokaryotic and eukaryotic genomes. Among SSRs, triplet repeats are of special significance because some of them have been linked to various genetic disorders. The objective of the study is to analyze the triplet repeats of complete human genome and to identify the genes that contain the triplet repeats in their coding region. The analysis will help us to identify the candidate genes that have potential for repeat expansion. Results: We have analyzed triplet repeats in the complete human genome from the publicly available sequences. Our analysis revealed that AGC and CCG repeat were predominantly present in the coding regions of the genome while UTRs and the upstream sequences contained CCG repeats in relative abundance. Analysis of density of triplet repeats (bp/Mb) revealed that AAT and AAC were the abundant repeats whereas ACT and ACG were the rare repeats found in human genome. We could identify about 2135 known or predicted genes that were associated with at least one of the triplet repeat types. A large proportion of putative transcripts that were identified by gene finding programs were found to be associated with triplet repeats. These transcripts will be the candidate genes for analysis of triplet repeat expansion and a possible association with disease phenotypes. Identification of 171 genes which contain a minimum of ten repeat units will be of particular interest in future in correlating their association with any disease phenotype due to the expansion potential of repeats present in them. The list of genes and other details of analysis are given in the online supplementary data (http://www.ingenovis.com/tripletrepeats)

    De novo 7p partial trisomy characterized by subtelomeric FISH and whole-genome array in a girl with mental retardation

    Get PDF
    Chromosome rearrangements involving telomeres have been established as one of the major causes of idiopathic mental retardation/developmental delay. This case of 7p partial trisomy syndrome in a 3-year-old female child presenting with developmental delay emphasizes the clinical relevance of cytogenetic diagnosis in the better management of genetic disorders. Application of subtelomeric FISH technique revealed the presence of interstitial telomeres and led to the ascertainment of partial trisomy for the distal 7p segment localized on the telomeric end of the short arm of chromosome 19. Whole-genome cytogenetic microarray-based analysis showed a mosaic 3.5 Mb gain at Xq21.1 besides the approximately 24.5 Mb gain corresponding to 7p15.3- > pter. The possible mechanisms of origin of the chromosomal rearrangement and the clinical relevance of trisomy for the genes lying in the critical regions are discussed

    MBL2 variations and malaria susceptibility in Indian populations

    Get PDF
    Human Mannose-binding Lectin (MBL) encoded by the MBL2 gene is a pattern recognition protein and has been associated with many infectious diseases, including malaria. We sought to investigate the contribution of functional MBL2 gene variations to Plasmodium falciparum malaria in well-defined cases and in matched controls. We resequenced the 8.7 kb of the entire MBL2 gene in 434 individuals clinically classified with malaria from regions of India where malaria is endemic. The study cohort included 176 patients with severe malaria, 101 patients with mild malaria, and 157 ethnically matched asymptomatic individuals. In addition, 830 individuals from 32 socially, linguistically, and geographically diverse endogamous populations of India were investigated for the distribution of functional MBL2 variants. The MBL2 −221C (X) allelic variant is associated with increased risk of malaria (mild malaria odds ratio [OR] = 1.9, corrected P value [PCorr] = 0.0036; severe malaria OR = 1.6, PCorr = 0.02). The exon1 variants MBL2*B (severe malaria OR = 2.1, PCorr = 0.036; mild versus severe malaria OR = 2.5, PCorr = 0.039) and MBL2*C (mild versus severe malaria OR = 5.4, PCorr = 0.045) increased the odds of having malaria. The exon1 MBL2*D/*B/*C variant increased the risk for severe malaria (OR = 3.4, PCorr = 0.000045). The frequencies of low MBL haplotypes were significantly higher in severe malaria (14.2%) compared to mild malaria (7.9%) and asymptomatic (3.8%). The MBL2*LYPA haplotypes confer protection, whereas MBL2*LXPA increases the malaria risk. Our findings in Indian populations demonstrate that MBL2 functional variants are strongly associated with malaria and infection severity

    Role of Progesterone Receptor Polymorphisms in the Recurrent Spontaneous Abortions: Indian Case

    Get PDF
    Background: We attempt to ascertain if the 3 linked single nucleotide polymorphisms (SNPs) of the Progesterone Recepto

    4-Pregnen-21-ol-3,20-dione-21-(4-bromobenzenesulfonate) (NSC 88915) and related novel steroid derivatives as tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors

    Get PDF
    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an enzyme that catalyzes the hydrolysis of 3'-phosphotyrosyl bonds. Such linkages form in vivo when topoisomerase I (Top1) processes DNA. For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes. Tdp1 inhibitors have been regarded as potential therapeutics in combination with Top1 inhibitors, such as the camptothecin derivatives, topotecan and irinotecan, which are used to treat human cancers. Using a novel high-throughput screening assay, we have identified the C21-substituted progesterone derivative, NSC 88915 (1), as a potential Tdp1 inhibitor. Secondary screening and cross-reactivity studies with related DNA processing enzymes confirmed that compound 1 possesses specific Tdp1 inhibitory activity. Deconstruction of compound 1 into discrete functional groups reveals that both components are required for inhibition of Tdp1 activity. Moreover, the synthesis of analogues of compound 1 has provided insight into the structural requirements for the inhibition of Tdp1. Surface plasmon resonance shows that compound 1 binds to Tdp1, whereas an inactive analogue fails to interact with the enzyme. Based on molecular docking and mechanistic studies, we propose that these compounds are competitive inhibitors, which mimics the oligonucleotide-peptide Tdp1 substrate. These steroid derivatives represent a novel chemotype and provide a new scaffold for developing small molecule inhibitors of Tdp1
    • …
    corecore