5,765 research outputs found
Beam test calibration of the balloon-borne imaging calorimeter for the CREAM experiment
CREAM (Cosmic Ray Energetics And Mass) is a multi-flight balloon mission
designed to collect direct data on the elemental composition and individual
energy spectra of cosmic rays. Two instrument suites have been built to be
flown alternately on a yearly base. The tungsten/Sci-Fi imaging calorimeter for
the second flight, scheduled for December 2005, was calibrated with electron
and proton beams at CERN. A calibration procedure based on the study of the
longitudinal shower profile is described and preliminary results of the beam
test are presented.Comment: 4 pages, 4 figures. To be published in the Proceedings of 29th
International Cosmic Ray Conference (ICRC 2005), Pune, India, August 3-10,
200
Measurements of cosmic-ray energy spectra with the 2nd CREAM flight
During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And
Mass) balloon experiment collected data for 28 days, measuring the charge and
the energy of cosmic rays (CR) with a redundant system of particle
identification and an imaging thin ionization calorimeter. Preliminary direct
measurements of the absolute intensities of individual CR nuclei are reported
in the elemental range from carbon to iron at very high energy.Comment: 4 pages, 3 figures, presented at XV International Symposium on Very
High Energy Cosmic Ray Interactions (ISVHECRI 2008
Elemental energy spectra of cosmic rays measured by CREAM-II
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei
from the second flight of the balloon-borne experiment CREAM (Cosmic Ray
Energetics And Mass). The instrument (CREAM-II) was comprised of detectors
based on different techniques (Cherenkov light, specific ionization in
scintillators and silicon sensors) to provide a redundant charge identification
and a thin ionization calorimeter capable of measuring the energy of cosmic
rays up to several hundreds of TeV. The data analysis is described and the
individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14
eV. The spectral shape looks nearly the same for all the primary elements and
can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen
absolute intensity in the energy range 100-800 GeV/n is also measured.Comment: 4 pages, 3 figures, presented at ICRC 2009, Lodz, Polan
Energy spectra of cosmic-ray nuclei at high energies
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei
from the second flight of the balloon-borne experiment Cosmic Ray Energetics
And Mass (CREAM). The instrument included different particle detectors to
provide redundant charge identification and measure the energy of CRs up to
several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg,
Si, and Fe are presented up to eV. The spectral shape looks
nearly the same for these primary elements and it can be fitted to an power law in energy. Moreover, a new measurement of the absolute
intensity of nitrogen in the 100-800 GeV/ energy range with smaller errors
than previous observations, clearly indicates a hardening of the spectrum at
high energy. The relative abundance of N/O at the top of the atmosphere is
measured to be (stat.)(sys.) at 800
GeV/, in good agreement with a recent result from the first CREAM flight.Comment: 32 pages, 10 figures. Accepted for publication in Astrophysical
Journa
Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight
Cosmic-ray proton and helium spectra have been measured with the
balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in
Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data
were collected at an average altitude of ~38.5 km with an average atmospheric
overburden of ~3.9 g cm. Individual elements are clearly separated with
a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and
helium nuclei, respectively. The measured spectra at the top of the atmosphere
are represented by power laws with a spectral index of -2.66 0.02 for
protons from 2.5 TeV to 250 TeV and -2.58 0.02 for helium nuclei from 630
GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a
few tens of GeV/nucleon. The helium flux is higher than that expected from the
extrapolation of the power law fitted to the lower-energy data. The relative
abundance of protons to helium nuclei is 9.1 0.5 for the range from 2.5
TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the
previous measurements at a few tens of GeV/nucleon.Comment: 20 pages, 4 figure
Construction and Performance of Large-Area Triple-GEM Prototypes for Future Upgrades of the CMS Forward Muon System
At present, part of the forward RPC muon system of the CMS detector at the
CERN LHC remains uninstrumented in the high-\eta region. An international
collaboration is investigating the possibility of covering the 1.6 < |\eta| <
2.4 region of the muon endcaps with large-area triple-GEM detectors. Given
their good spatial resolution, high rate capability, and radiation hardness,
these micro-pattern gas detectors are an appealing option for simultaneously
enhancing muon tracking and triggering capabilities in a future upgrade of the
CMS detector. A general overview of this feasibility study will be presented.
The design and construction of small (10\times10 cm2) and full-size trapezoidal
(1\times0.5 m2) triple-GEM prototypes will be described. During detector
assembly, different techniques for stretching the GEM foils were tested.
Results from measurements with x-rays and from test beam campaigns at the CERN
SPS will be shown for the small and large prototypes. Preliminary simulation
studies on the expected muon reconstruction and trigger performances of this
proposed upgraded muon system will be reported.Comment: 7 pages, 25 figures, submitted for publication in conference record
of the 2011 IEEE Nuclear Science Symposium, Valencia, Spai
An overview of the design, construction and performance of large area triple-GEM prototypes for future upgrades of the CMS forward muon system
GEM detectors are used in high energy physics experiments given their good spatial resolution, high rate capability and radiation hardness. An international collaboration is investigating the possibility of covering the 1.6 < vertical bar eta vertical bar < 2.4 region of the CMS muon endcaps with large-area triple-GEM detectors. The CMS high-eta area is actually not fully instrumented, only Cathode Strip Chamber (CSC) are installed. The vacant area presents an opportunity for a detector technology able to to cope with the harsh radiation environment; these micropattern gas detectors are an appealing option to simultaneously enhance muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study is presented. Design and construction of small (10cm x 10cm) and full-size trapezoidal (1m x 0.5m) triple-GEM prototypes is described. Results from measurements with x-rays and from test beam campaigns at the CERN SPS is shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system are reported
- …