109 research outputs found

    On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds

    Full text link
    We consider the Fisher-KPP equation with a non-local interaction term. We establish a condition on the interaction that allows for existence of non-constant periodic solutions, and prove uniform upper bounds for the solutions of the Cauchy problem, as well as upper and lower bounds on the spreading rate of the solutions with compactly supported initial data

    The Bramson delay in the non-local Fisher-KPP equation

    Get PDF
    We consider the non-local Fisher-KPP equation modeling a population with individuals competing with each other for resources with a strength related to their distance, and obtain the asymptotics for the position of the invasion front starting from a localized population. Depending on the behavior of the competition kernel at infinity, the location of the front is either 2t(3/2)logt+O(1)2t - ({3}/2)\log t + O(1), as in the local case, or 2tO(tβ)2t - O(t^\beta) for some explicit β(0,1)\beta \in (0,1). Our main tools here are alocal-in-time Harnack inequality and an analysis of the linearized problem with a suitable moving Dirichlet boundary condition. Our analysis also yields, for any β(0,1)\beta\in(0,1), examples of Fisher-KPP type non-linearities f_βf\_\beta such that the front for the localFisher-KPP equation with reaction term f_βf\_\beta is at 2tO(tβ)2t - O(t^\beta)

    Super-linear spreading in local and non-local cane toads equations

    Get PDF
    In this paper, we show super-linear propagation in a nonlocal reaction-diffusion-mutation equation modeling the invasion of cane toads in Australia that has attracted attention recently from the mathematical point of view. The population of toads is structured by a phenotypical trait that governs the spatial diffusion. In this paper, we are concerned with the case when the diffusivity can take unbounded values, and we prove that the population spreads as t3/2t^{3/2}. We also get the sharp rate of spreading in a related local model
    corecore