16 research outputs found

    Magnetization Plateau Observed by Ultra-High Field Faraday Rotation in a Kagom\'e Antiferromagnet Herbertsmithite

    Get PDF
    To capture the high-field magnetization process of herbertsmithite (ZnCu3(OH)6Cl2), Faraday rotation (FR) measurements were carried out on a single crystal in magnetic fields of up to 190 T. The magnetization data evaluated from the FR angle exhibited a saturation behavior above 150 T at low temperatures, which was attributed to the 1/3 magnetization plateau. The overall behavior of the magnetization process was reproduced by theoretical models based on the nearest-neighbor Heisenberg model. This suggests that herbertsmithite is a proximate kagome antiferromagnet hosting an ideal quantum spin liquid in the ground state. A distinguishing feature is the superlinear magnetization increase, which is in contrast to the Brillouin function-type increase observed by conventional magnetization measurements and indicates a reduced contribution from free spins located at the Zn sites to the FR signal.Comment: 4 pages and 4 figures plus Supplemental Materia

    Phase diagram of multiferroic KCu3_3As2_2O7_7(OD)3_3

    Full text link
    The layered compound KCu3_3As2_2O7_7(OD)3_3, comprising distorted kagome planes of S=1/2S=1/2 Cu2+^{2+} ions, is a recent addition to the family of type-II multiferroics. Previous zero field neutron diffraction work has found two helically ordered regimes in \kns, each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to 2020~T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the HTH-T phase diagram. We find metamagnetic transitions in both low temperatures phases around μ0Hc3.7\mu_0 H_c \sim 3.7~T, which neutron powder diffraction reveals to correspond to a rotation of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at 3.73.7~T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion

    Negative-chirality order in S=1/2S=1/2 kagome antiferromagnet CdCu3_{3}(OH)6_{6}(NO3_{3})2_{2}\cdot H2_{2}O

    Get PDF
    The neutron diffraction and nuclear magnetic resonance (NMR) measurements have been used to microscopically analyze the magnetic structure in the S=1/2S = 1/2 kagome antiferromagnet CdCu3_{3}(OH)6_{6}(NO3_{3})2_{2}\cdot H2_{2}O. Below the magnetic ordering temperature TN4T_N\simeq 4 K, magnetic Bragg reflections at (110) and (100) were found in the neutron diffraction pattern, which suggests a q=0q=0 magnetic structure. Furthermore, the vector spin chirality for the q=0q=0 structure was successfully identified from the internal field direction obtained by the 14^{14}N-NMR measurement. Our findings point to a chirality-ordered magnetic structure with negative vector chirality and 100\langle 100 \rangle anisotropy.Comment: 6 pages, 5 figure

    Thermal Hall Effects of Spins and Phonons in Kagome Antiferromagnet Cd-Kapellasite

    Get PDF
    We have investigated the thermal-transport properties of the kagome antiferromagnet Cd-kapellasite (Cd-K). We find that a field suppression effect on the longitudinal thermal conductivity k_xx sets in below ~25 K, suggesting a large spin contribution k_xx^sp in k_xx. We also find clear thermal Hall signals in the spin liquid phase in all Cd-K samples. The magnitude of the thermal Hall conductivity k_xy shows a significant dependence on the sample's scattering time. On the other hand, the temperature dependence of k_xy is similar in all Cd-K samples; k_xy shows a peak at almost the same temperature of the peak of the phonon thermal conductivity k_xy^ph which is estimated by k_xx at 15 T. These results indicate the presence of a dominant phonon thermal Hall k_xy^ph at 15 T. In addition to k_xy^ph, we find that the field dependence of k_xy at low fields turns out to be non-linear at low temperatures, concomitantly with the appearance of the field suppression of k_xx, indicating the presence of a spin thermal Hall k_xy^sp at low fields. Remarkably, by assembling the k_xx dependene of k_xy^sp data of other kagome antiferromagnets, we find that, whereas k_xy^sp stays a constant in the low-k_xx region, k_xy^sp starts to increase as k_xx does in the high-k_xx region. This k_xx dependence of k_xy^sp indicates the presence of both intrinsic and extrinsic mechanisms in the spin thermal Hall effect in kagome antiferromagnets. Furthermore, both k_xy^ph and k_xy^sp disappear in the antiferromagnetic ordered phase at low fields, showing that phonons alone do not exhibit the thermal Hall effect. A high field above ~7 T induces k_xy^ph, concomitantly with a field-induced increase of k_xx and the specific heat, suggesting a coupling of the phonons to the field-induced spin excitations as the origin of k_xy^ph.Comment: 33 pages, 16 figures; analyses and figures for the heat capacity and the spin thermal Hall effect were adde

    Dimensional reduction by geometrical frustration in a cubic antiferromagnet composed of tetrahedral clusters

    Get PDF
    Dimensionality is a critical factor in determining the properties of solids and is an apparent built-in character of the crystal structure. However, it can be an emergent and tunable property in geometrically frustrated spin systems. Here, we study the spin dynamics of the tetrahedral cluster antiferromagnet, pharmacosiderite, via muon spin resonance and neutron scattering. We find that the spin correlation exhibits a two-dimensional characteristic despite the isotropic connectivity of tetrahedral clusters made of spin 5/2 Fe3+ ions in the three-dimensional cubic crystal, which we ascribe to two-dimensionalisation by geometrical frustration based on spin wave calculations. Moreover, we suggest that even one-dimensionalisation occurs in the decoupled layers, generating low-energy and one-dimensional excitation modes, causing large spin fluctuation in the classical spin system. Pharmacosiderite facilitates studying the emergence of low-dimensionality and manipulating anisotropic responses arising from the dimensionality using an external magnetic field
    corecore