26 research outputs found

    Telomeres and Cellular Senescence in Metabolic and Endocrine Diseases

    Get PDF
    A number of observations suggest a close connection between telomere length and mortality and age-related disease, suggesting that telomere length is a useful marker of individual biological aging and the shortening of telomere length is causally related with the pathogenesis in age-related diseases. To date, the significance of telomere length in metabolic and endocrine diseases has also been clarified. It has been reported that obesity, type 2 diabetes mellitus (T2DM), NAFLD, and hypertension were associated with shortened telomere length. In endocrine diseases, polycystic ovary syndrome (PCOS), Cushing’s syndrome, and acromegaly were associated with shortened telomere length. In these conditions, an increased oxidative stress associated with the metabolic and hormonal abnormalities appears to play a pivotal role in the shortened telomere length. Recently, a large population-based study demonstrated that shortened telomeres at baseline were associated with an increased risk of metabolic diseases, suggesting that the shortened telomere itself plays a causal role for the onset or development of the metabolic diseases. In this chapter, the pathophysiological role of shortened telomere length in metabolic and endocrine diseases and the significance of cellular senescence are discussed

    Disease Modeling of Pituitary Adenoma Using Human Pluripotent Stem Cells

    No full text
    Pituitary adenomas are characterized by abnormal growth in the pituitary gland. Surgical excision is the first-line treatment for functional (hormone-producing) pituitary adenomas, except for prolactin-producing adenomas; however, complete excision is technically challenging, and many patients require long-term medication after the treatment. In addition, the pathophysiology of pituitary adenomas, such as tumorigenesis, has not been fully understood. Pituitary adenoma pathophysiology has mainly been studied using animal models and animal tumor-derived cell lines. Nevertheless, experimental studies on human pituitary adenomas are difficult because of the significant differences among species and the lack of reliable cell lines. Recently, several methods have been established to differentiate pituitary cells from human pluripotent stem cells (hPSCs). The induced pituitary hormone-producing cells retain the physiological properties already lost in tumor-derived cell lines. Moreover, CRISPR/Cas9 systems have expedited the introduction of causative gene mutations in various malignant tumors into hPSCs. Therefore, hPSC-derived pituitary cells have great potential as a novel platform for studying the pathophysiology of human-specific pituitary adenomas and developing novel drugs. This review presents an overview of the recent progresses in hPSC applications for pituitary research, functional pituitary adenoma pathogenesis, and genome-editing techniques for introducing causative mutations. We also discuss future applications of hPSCs for studying pituitary adenomas

    Disease Modeling of Pituitary Adenoma Using Human Pluripotent Stem Cells

    No full text
    Pituitary adenomas are characterized by abnormal growth in the pituitary gland. Surgical excision is the first-line treatment for functional (hormone-producing) pituitary adenomas, except for prolactin-producing adenomas; however, complete excision is technically challenging, and many patients require long-term medication after the treatment. In addition, the pathophysiology of pituitary adenomas, such as tumorigenesis, has not been fully understood. Pituitary adenoma pathophysiology has mainly been studied using animal models and animal tumor-derived cell lines. Nevertheless, experimental studies on human pituitary adenomas are difficult because of the significant differences among species and the lack of reliable cell lines. Recently, several methods have been established to differentiate pituitary cells from human pluripotent stem cells (hPSCs). The induced pituitary hormone-producing cells retain the physiological properties already lost in tumor-derived cell lines. Moreover, CRISPR/Cas9 systems have expedited the introduction of causative gene mutations in various malignant tumors into hPSCs. Therefore, hPSC-derived pituitary cells have great potential as a novel platform for studying the pathophysiology of human-specific pituitary adenomas and developing novel drugs. This review presents an overview of the recent progresses in hPSC applications for pituitary research, functional pituitary adenoma pathogenesis, and genome-editing techniques for introducing causative mutations. We also discuss future applications of hPSCs for studying pituitary adenomas

    Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence.

    Get PDF
    Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases.We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts.Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence.Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I
    corecore