621 research outputs found

    (S)-[5-Methyl-3-(3-methyl­thio­phen-2-yl)-4,5-dihydro­isoxazol-5-yl]methanol

    Get PDF
    In the title compound, C10H13NO2S, the thio­phene and isoxazoline rings are almost coplanar, the dihedral angle between their least-squares planes being 2.08 (1)°. The O—H atoms of the methyl hy­droxy group and the N atom of the isoxazole ring are orientated in the same direction to allow for the formation of inter­molecular O—H⋯N hydrogen bonds that lead to a supra­molecular chain along the a axis

    Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially Via AMPK Activation

    Get PDF
    The chronic low-grade inflammation in adipose tissue plays a causal role in obesity-induced insulin resistance and its associated pathophysiological consequences. In this study, we investigated the effects of extracts of Broussonetia papyrifera root bark (PRE) and its bioactive components on inflammation and insulin sensitivity. PRE inhibited TNF-alpha-induced NF-kappa B transcriptional activity in the NF-kappa B luciferase assay and pro-inflammatory genes' expression by blocking phosphorylation of I kappa B and NF-kappa B in 3T3-L1 adipocytes, which were mediated by activating AMPK. Ten-week-high fat diet (HFD)-fed C57BL6 male mice treated with PRE had improved glucose intolerance and decreased inflammation in adipose tissue, as indicated by reductions in NF-kappa B phosphorylation and pro-inflammatory genes' expression. Furthermore, PRE activated AMP-activated protein kinase (AMPK) and reduced lipogenic genes' expression in both adipose tissue and liver. Finally, we identified broussoflavonol B (BF) and kazinol J (KJ) as bioactive constituents to suppress pro-inflammatory responses via activating AMPK in 3T3-L1 adipocytes. Taken together, these results indicate the therapeutic potential of PRE, especially BF or KJ, in metabolic diseases such as obesity and type 2 diabetes

    Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries

    Get PDF
    Si composite negative electrodes for lithium secondary batteries degrade in the dealloying period with an abrupt increase in internal resistance that is caused by a breakdown of conductive network made between Si and carbon particles. This results from a volume contraction of Si particles after expansion in the previous alloying process. Due to the large internal resistance, the dealloying reaction is not completed while Si remains as a lithiated state. The anodic performance is greatly improved either by applying a pressure on the cells or loading a larger amount of conductive carbon in the composite electrodes.This work was partially supported by KOSEF through Research Center for Energy Conversion and Storage, and by the financial support of Center for Nanostructured Materials Technology under 21st Century Frontier R&D Programs of the Ministry of Science and Technology, Korea. Financial support from LG Chem. Ltd. is also acknowledged

    bZIPDB : A database of regulatory information for human bZIP transcription factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Basic region-leucine zipper (bZIP) proteins are a class of transcription factors (TFs) that play diverse roles in eukaryotes. Malfunctions in these proteins lead to cancer and various other diseases. For detailed characterization of these TFs, further public resources are required.</p> <p>Description</p> <p>We constructed a database, designated bZIPDB, containing information on 49 human bZIP TFs, by means of automated literature collection and manual curation. bZIPDB aims to provide public data required for deciphering the gene regulatory network of the human bZIP family, e.g., evaluation or reference information for the identification of regulatory modules. The resources provided by bZIPDB include (1) protein interaction data including direct binding, phosphorylation and functional associations between bZIP TFs and other cellular proteins, along with other types of interactions, (2) bZIP TF-target gene relationships, (3) the cellular network of bZIP TFs in particular cell lines, and (4) gene information and ontology. In the current version of the database, 721 protein interactions and 560 TF-target gene relationships are recorded. bZIPDB is annually updated for the newly discovered information.</p> <p>Conclusion</p> <p>bZIPDB is a repository of detailed regulatory information for human bZIP TFs that is collected and processed from the literature, designed to facilitate analysis of this protein family. bZIPDB is available for public use at <url>http://biosoft.kaist.ac.kr/bzipdb</url>.</p

    Analgesic effect of highly reversible ω-conotoxin FVIA on N type Ca2+ channels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>N-type Ca<sup>2+ </sup>channels (Ca<sub>v</sub>2.2) play an important role in the transmission of pain signals to the central nervous system. ω-Conotoxin (CTx)-MVIIA, also called ziconotide (Prialt<sup>®</sup>), effectively alleviates pain, without causing addiction, by blocking the pores of these channels. Unfortunately, CTx-MVIIA has a narrow therapeutic window and produces serious side effects due to the poor reversibility of its binding to the channel. It would thus be desirable to identify new analgesic blockers with binding characteristics that lead to fewer adverse side effects.</p> <p>Results</p> <p>Here we identify a new CTx, FVIA, from the Korean <it>Conus Fulmen </it>and describe its effects on pain responses and blood pressure. The inhibitory effect of CTx-FVIA on N-type Ca<sup>2+ </sup>channel currents was dose-dependent and similar to that of CTx-MVIIA. However, the two conopeptides exhibited markedly different degrees of reversibility after block. CTx-FVIA effectively and dose-dependently reduced nociceptive behavior in the formalin test and in neuropathic pain models, and reduced mechanical and thermal allodynia in the tail nerve injury rat model. CTx-FVIA (10 ng) also showed significant analgesic effects on writhing in mouse neurotransmitter- and cytokine-induced pain models, though it had no effect on acute thermal pain and interferon-γ induced pain. Interestingly, although both CTx-FVIA and CTx-MVIIA depressed arterial blood pressure immediately after administration, pressure recovered faster and to a greater degree after CTx-FVIA administration.</p> <p>Conclusions</p> <p>The analgesic potency of CTx-FVIA and its greater reversibility could represent advantages over CTx-MVIIA for the treatment of refractory pain and contribute to the design of an analgesic with high potency and low side effects.</p
    corecore