2,964 research outputs found

    Modulation of hole-injection in GaInN-light emitting triodes and its effect on carrier recombination behavior

    Get PDF
    The effects of the hole injection modulated by using a three-terminal GaInN-based light emitter, light-emitting triode (LET), on carrier recombination behavior and efficiency droop are investigated. It was found that the lateral electric field created by applying voltage bias between the two anodes effectively reduces efficiency droop as well as dynamic conductance of LETs. Detailed analyses of LETs under various operation conditions by APSYS simulations reveal that the asymmetry in carrier transport between electrons and holes is alleviated by promoted injection of hot holes over the potential barrier, increasing the hole concentration as well as the radiative recombination rate in the multiple quantum well active region. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.110Ysciescopu

    Magnetoelectric coupling of [00l]-oriented Pb(Zr0.4Ti0.6)O-3-Ni0.8Zn0.2Fe2O4 multilayered thin films

    Get PDF
    Multilayered thin films consisting of alternatively stacking Pb(Zr0.4Ti0.6)O-3 (PZT) and Ni0.8Zn0.2Fe2O4 (NZFO) layers were fabricated to exploit a strain-mediated coupling of piezoelectricity and magnetostriction. The 450-nm-thick PZT/NZFO multilayer fabricated by pulsed laser deposition showed magnetodielectric effects upon applying a static magnetic field. The magnetoelectric (ME) susceptibility values estimated using these magnetodielectric responses were in the range of 15-30 mV/cm Oe at a zero magnetic-field strength and were comparable to those obtained using a more commonly employed "dynamic" ME method. (c) 2007 American Institute of Physics.open116567sciescopu

    High capacity cathode materials for Li-S batteries

    Full text link
    To enhance the stability of sulfur cathode for a high energy lithium-sulfur battery, sulfur-activated carbon (S-AC) composite was prepared by encapsulating sulfur into micropores of activated carbon using a solution-based processing technique. In the analysis using the prepared specimen of S-AC composite by the focused ion beam (FIB) technique, the elemental sulfur exists in a highly dispersed state inside the micropores of activated carbon, which has a large surface area and a narrow pore distribution. The S-AC composite was characterized through X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) method, selected area electron diffraction (SAED), energy dispersive X-ray spectrometry (EDX), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), and field emission scanning electron microscopy (FESEM). A lithium-sulfur cell using the S-AC composite has a high first discharge capacity over 800 mA h g -1 S even at a high current density such as 2C (3200 mA g -1 S) and has good cycleability around 500 mA h g-1 S discharge capacity at the 50th cycle at the same current density. © 2013 The Royal Society of Chemistry

    Holographic Conductivity in Disordered Systems

    Full text link
    The main purpose of this paper is to holographically study the behavior of conductivity in 2+1 dimensional disordered systems. We analyze probe D-brane systems in AdS/CFT with random closed string and open string background fields. We give a prescription of calculating the DC conductivity holographically in disordered systems. In particular, we find an analytical formula of the conductivity in the presence of codimension one randomness. We also systematically study the AC conductivity in various probe brane setups without disorder and find analogues of Mott insulators.Comment: 43 pages, 28 figures, latex, references added, minor correction

    PI3K-C2 alpha Knockdown Results in Rerouting of Insulin Signaling and Pancreatic Beta Cell Proliferation

    Get PDF
    Insulin resistance is a syndrome that affects multiple insulin target tissues, each having different biological functions regulated by insulin. A remaining question is to mechanistically explain how an insulin target cell/tissue can be insulin resistant in one biological function and insulin sensitive in another at the same time. Here, we provide evidence that in pancreatic beta cells, knockdown of PI3K-C2 alpha expression results in rerouting of the insulin signal from insulin receptor (IR)-B/PI3K-C2 alpha/PKB-mediated metabolic signaling to IR-B/Shc/ERK-mediated mitogenic signaling, which allows the beta cell to switch from a highly glucose-responsive, differentiated state to a proliferative state. Our data suggest the existence of IR-cascade-selective insulin resistance, which allows rerouting of the insulin signal within the same target cell. Hence, factors involved in the rerouting of the insulin signal represent tentative therapeutic targets in the treatment of insulin resistance.11108Ysciescopu

    Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation

    Get PDF
    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors.111615Ysciescopu

    Spatially Bandgap-Graded MoS₂₍₁-ₓ₎Se₂ₓ Homojunctions for Self-Powered Visible–Near-Infrared Phototransistors

    Get PDF
    Ternary transition metal dichalcogenide alloys with spatially graded bandgaps are an emerging class of two-dimensional materials with unique features, which opens up new potential for device applications. Here, visible–near-infrared and self-powered phototransistors based on spatially bandgap-graded MoS2(1−x)Se2x alloys, synthesized by a simple and controllable chemical solution deposition method, are reported. The graded bandgaps, arising from the spatial grading of Se composition and thickness within a single domain, are tuned from 1.83 to 1.73 eV, leading to the formation of a homojunction with a built-in electric field. Consequently, a strong and sensitive gate-modulated photovoltaic effect is demonstrated, enabling the homojunction phototransistors at zero bias to deliver a photoresponsivity of 311 mA W−1, a specific detectivity up to ~ 1011 Jones, and an on/off ratio up to ~ 104. Remarkably, when illuminated by the lights ranging from 405 to 808 nm, the biased devices yield a champion photoresponsivity of 191.5 A W−1, a specific detectivity up to ~ 1012 Jones, a photoconductive gain of 106–107, and a photoresponsive time in the order of ~ 50 ms. These results provide a simple and competitive solution to the bandgap engineering of two-dimensional materials for device applications without the need for p–n junctions

    Dimensionality and dynamics in the behavior of C. elegans

    Get PDF
    A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here we show that the space of shapes adopted by the nematode C. elegans is surprisingly low dimensional, with just four dimensions accounting for 95% of the shape variance, and we partially reconstruct "equations of motion" for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively "steering" the worm in real time.Comment: 9 pages, 6 figures, minor correction

    Changes in dental plaque following hospitalisation in a critical care unit: an observational study

    Get PDF
    Additional funding was provided by a grant from the Faculty of Dental Surgery, Royal College of Surgeons, England, and this work was undertaken at University College London/University College London Hospitals, which received a proportion of funding from the Department of Health’s National Institute for Health Research Biomedical Research Centres funding scheme
    corecore