777 research outputs found

    Running mechanics adjustments to perceptually-regulated interval runs in hypoxia and normoxia

    Get PDF
    Objectives We determined whether perceptually-regulated, high-intensity intermittent runs in hypoxia and normoxia induce similar running mechanics adjustments within and between intervals. Design Within-participants repeated measures. Methods Nineteen trained runners completed a high-intensity intermittent running protocol (4×4-min intervals at a perceived rating exertion of 16 on the 6–20 Borg scale, 3-min passive recoveries) in either hypoxic (FiO2 =0.15) or normoxic (FiO2 =0.21) conditions. Running mechanics were collected over 10 consecutive steps, at constant velocity (∼15.0±2.0km.h−1), at the beginning and the end of each 4-min interval. Repeated measure ANOVA were used to assess within intervals (onset vs. end of each interval), between intervals (interval 1, 2, 3 vs. 4) and FiO2 (0.15 vs. 0.21) main effects and any potential interaction. Results Participants progressively reduced running velocity from interval 1–4, and more so in hypoxia compared to normoxia for intervals 2, 3 and 4 (P 0.298) and FiO2 (across all intervals P >0.082) main effects or any significant between intervals×within intervals×FiO2 interactions (all P >0.098) for any running mechanics variables. Irrespective of interval number or FiO2, peak loading rate (+10.6±7.7%; P <0.001) and duration of push-off phase (+2.0±3.1%; P =0.001) increased from the onset to the end of 4-min intervals, whereas peak push-off force decreased (−4.0±4.0%; P <0.001). Conclusions When carrying out perceptually-regulated interval treadmill runs, runners adjust to progressively slower velocities in hypoxia compared to normoxia. However, only subtle constant-velocity modifications of their mechanical behaviour occurred within each set, independently of FiO2 or interval number

    A bayesian multilevel modeling approach for data query in wireless sensor networks

    Get PDF
    In power-limited Wireless Sensor Network (WSN), it is important to reduce the communication load in order to achieve energy savings. This paper applies a novel statistic method to estimate the parameters based on the realtime data measured by local sensors. Instead of transmitting large real-time data, we proposed to transmit the small amount of dynamic parameters by exploiting both temporal and spatial correlation within and between sensor clusters. The temporal correlation is built on the level-1 Bayesian model at each sensor to predict local readings. Each local sensor transmits their local parameters learned from historical measurement data to their cluster heads which account for the spatial correlation and summarize the regional parameters based on level-2 Bayesian model. Finally, the cluster heads transmit the regional parameters to the sink node. By utilizing this statistical method, the sink node can predict the sensor measurements within a specified period without directly communicating with local sensors. We show that this approach can dramatically reduce the amount of communication load in data query applications and achieve significant energy savings

    Growth of vertically aligned arrays of carbon nanotubes for high field emission

    No full text
    International audienceVertically aligned multi-walled carbon nanotubes have been grown on Ni-coated silicon substrates, by using either direct current diode or triode plasma-enhanced chemical vapor deposition at low temperature (around 620 °C). Acetylene gas has been used as the carbon source while ammonia and hydrogen have been used for etching. However densely packed (∼ 109 cm− 2) CNTs were obtained when the pressure was ∼ 100 Pa. The alignment of nanotubes is a necessary, but not a sufficient condition in order to get an efficient electron emission: the growth of nanotubes should be controlled along regular arrays, in order to minimize the electrostatic interactions between them. So a three dimensional numerical simulation has been developed to calculate the local electric field in the vicinity of the tips for a finite square array of nanotubes and thus to calculate the maximum of the electron emission current density as a function of the spacing between nanotubes. Finally the triode plasma- enhanced process combined with pre-patterned catalyst films (using different lithography techniques) has been chosen in order to grow regular arrays of aligned CNTs with different pitches in the micrometer range. The comparison between the experimental and the simulation data permits to define the most efficient CNT-based electron field emitter

    Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States, and Hierarchy

    Full text link
    We present three holographic constructions of fractional quantum Hall effect (FQHE) via string theory. The first model studies edge states in FQHE using supersymmetric domain walls in N=6 Chern-Simons theory. We show that D4-branes wrapped on CP^1 or D8-branes wrapped on CP^3 create edge states that shift the rank or the level of the gauge group, respectively. These holographic edge states correctly reproduce the Hall conductivity. The second model presents a holographic dual to the pure U(N)_k (Yang-Mills-)Chern-Simons theory based on a D3-D7 system. Its holography is equivalent to the level-rank duality, which enables us to compute the Hall conductivity and the topological entanglement entropy. The third model introduces the first string theory embedding of hierarchical FQHEs, using IIA string on C^2/Z_n.Comment: 36 pages, 6 figures; v2: with an improved derivation of Hall conductivity in section 3.2, typo corrections, and additional references; v3: explanations and comments adde

    Experimental Critical Current Patterns in Josephson Junction Ladders

    Full text link
    We present an experimental and theoretical study of the magnetic field dependence of the critical current of Josephson junction ladders. At variance with the well-known case of a one-dimensional (1D) parallel array of Josephson junctions the magnetic field patterns display a single minimum even for very low values of the self-inductance parameter βL\beta_{\rm L}. Experiments performed changing both the geometrical value of the inductance and the critical current of the junctions show a good agreement with numerical simulations. We argue that the observed magnetic field patterns are due to a peculiar mapping between the isotropic Josephson ladder and the 1D parallel array with the self-inductance parameter βLeff=βL+2\beta_{\rm L}^{\rm eff}=\beta_{\rm L}+2.Comment: 4 pages, 4 picture

    Stabilized electron emission from silicon coated carbon nanotubes for a high-performance electron source

    Get PDF
    The authors show that carbon nanotubes (CNTs) coated with an amorphous silicon layer around their periphery show enhanced and stable electron emission. The CNT-field emitter array was grown on silicon substrate through a resist-assisted patterning process. The CNTs become coated with silicon from the substrate, which is etched and redeposited onto the CNTs. The authors obtained enhanced and stabilized electron emission from the silicon coated CNTs with a turn-on field of 2 V/μm at an emission current density of 1 μA/ cm 2. The structure and electron emission properties of the functionalized emitters are discussed

    Low energy fast events from radon progenies at the surface of a CsI(Tl) scintillator

    Full text link
    In searches for rare phenomena such as elastic scattering of dark matter particles or neutrinoless double beta decay, alpha decays of Rn222 progenies attached to the surfaces of the detection material have been identified as a serious source of background. In measurements with CsI(Tl) scintillator crystals, we demonstrate that alpha decays of surface contaminants produce fast signals with a characteristic mean-time distribution that is distinct from those of neutron- and gamma-induced events.Comment: 9 pages, 8 figure

    Muon-Spin Rotation Spectra in the Mixed Phase of High-T_c Superconductors : Thermal Fluctuations and Disorder Effects

    Full text link
    We study muon-spin rotation (muSR) spectra in the mixed phase of highly anisotropic layered superconductors, specifically Bi_2+xSr_2-xCaCu_2O_8+delta (BSCCO), by modeling the fluid and solid phases of pancake vortices using liquid-state and density functional methods. The role of thermal fluctuations in causing motional narrowing of muSR lineshapes is quantified in terms of a first-principles theory of the flux-lattice melting transition. The effects of random point pinning are investigated using a replica treatment of liquid state correlations and a replicated density functional theory. Our results indicate that motional narrowing in the pure system, although substantial, cannot account for the remarkably small linewidths obtained experimentally at relatively high fields and low temperatures. We find that satisfactory agreement with the muSR data for BSCCO in this regime can be obtained through the ansatz that this ``phase'' is characterized by frozen short-range positional correlations reflecting the structure of the liquid just above the melting transition. This proposal is consistent with recent suggestions of a ``pinned liquid'' or ``glassy'' state of pancake vortices in the presence of pinning disorder. Our results for the high-temperature liquid phase indicate that measurable linewidths may be obtained in this phase as a consequence of density inhomogeneities induced by the pinning disorder. The results presented here comprise a unified, first-principles theoretical treatment of muSR spectra in highly anisotropic layered superconductors in terms of a controlled set of approximations.Comment: 50 pages Latex file, including 10 postscript figure

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review

    Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior

    Full text link
    Recent overwhelming evidences show that the sun strongly influences the Earth's climate and environment. Moreover existence of life on this Earth mainly depends upon the sun's energy. Hence, understanding of physics of the sun, especially the thermal, dynamic and magnetic field structures of its interior, is very important. Recently, from the ground and space based observations, it is discovered that sun oscillates near 5 min periodicity in millions of modes. This discovery heralded a new era in solar physics and a separate branch called helioseismology or seismology of the sun has started. Before the advent of helioseismology, sun's thermal structure of the interior was understood from the evolutionary solution of stellar structure equations that mimicked the present age, mass and radius of the sun. Whereas solution of MHD equations yielded internal dynamics and magnetic field structure of the sun's interior. In this presentation, I review the thermal, dynamic and magnetic field structures of the sun's interior as inferred by the helioseismology.Comment: To be published in the proceedings of the meeting "3rd International Conference on Current Developments in Atomic, Molecular, Optical and Nano Physics with Applications", December 14-16, 2011, New Delhi, Indi
    corecore