12,285 research outputs found

    Medium effects of magnetic moments of baryons on neutron stars under strong magnetic fields

    Full text link
    We investigate medium effects due to density-dependent magnetic moments of baryons on neutron stars under strong magnetic fields. If we allow the variation of anomalous magnetic moments (AMMs) of baryons in dense matter under strong magnetic fields, AMMs of nucleons are enhanced to be larger than those of hyperons. The enhancement naturally affects the chemical potentials of baryons to be large and leads to the increase of a proton fraction. Consequently, it causes the suppression of hyperons, resulting in the stiffness of the equation of state. Under the presumed strong magnetic fields, we evaluate relevant particles' population, the equation of state and the maximum masses of neutron stars by including density-dependent AMMs and compare them with those obtained from AMMs in free space

    Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap

    Full text link
    We have observed the persistent flow of Bose-condensed atoms in a toroidal trap. The flow persists without decay for up to 10 s, limited only by experimental factors such as drift and trap lifetime. The quantized rotation was initiated by transferring one unit, \hbar, of the orbital angular momentum from Laguerre-Gaussian photons to each atom. Stable flow was only possible when the trap was multiply-connected, and was observed with a BEC fraction as small as 15%. We also created flow with two units of angular momentum, and observed its splitting into two singly-charged vortices when the trap geometry was changed from multiply- to simply-connected.Comment: 1 file, 5 figure

    Observation of a 2D Bose-gas: from thermal to quasi-condensate to superfluid

    Full text link
    We present experimental results on a Bose gas in a quasi-2D geometry near the Berezinskii, Kosterlitz and Thouless (BKT) transition temperature. By measuring the density profile, \textit{in situ} and after time of flight, and the coherence length, we identify different states of the gas. In particular, we observe that the gas develops a bimodal distribution without long range order. In this state, the gas presents a longer coherence length than the thermal cloud; it is quasi-condensed but is not superfluid. Experimental evidence indicates that we observe the superfluid transition (BKT transition).Comment: 5 pages, 6 figure

    On the role of a new type of correlated disorder in extended electronic states in the Thue-Morse lattice

    Full text link
    A new type of correlated disorder is shown to be responsible for the appearance of extended electronic states in one-dimensional aperiodic systems like the Thue-Morse lattice. Our analysis leads to an understanding of the underlying reason for the extended states in this system, for which only numerical evidence is available in the literature so far. The present work also sheds light on the restrictive conditions under which the extended states are supported by this lattice.Comment: 11 pages, LaTeX V2.09, 1 figure (available on request), to appear in Physical Review Letter

    Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates

    Full text link
    There is a pressing need for robust and straightforward methods to create potentials for trapping Bose-Einstein condensates which are simultaneously dynamic, fully arbitrary, and sufficiently stable to not heat the ultracold gas. We show here how to accomplish these goals, using a rapidly-moving laser beam that "paints" a time-averaged optical dipole potential in which we create BECs in a variety of geometries, including toroids, ring lattices, and square lattices. Matter wave interference patterns confirm that the trapped gas is a condensate. As a simple illustration of dynamics, we show that the technique can transform a toroidal condensate into a ring lattice and back into a toroid. The technique is general and should work with any sufficiently polarizable low-energy particles.Comment: Minor text changes and three references added. This is the final version published in New Journal of Physic

    Magnetization Jump in a Model for Flux Lattice Melting at Low Magnetic Fields

    Full text link
    Using a frustrated XY model on a lattice with open boundary conditions, we numerically study the magnetization change near a flux lattice melting transition at low fields. In both two and three dimensions, we find that the melting transition is followed at a higher temperature by the onset of large dissipation associated with the zero-field XY transition. It is characterized by the proliferation of vortex-antivortex pairs (in 2D) or vortex loops (in 3D). At the upper transition, there is a sharp increase in magnetization, in qualitative agreement with recent local Hall probe experiments.Comment: updated figures and texts. new movies available at http://www.physics.ohio-state.edu:80/~ryu/jj.html. Accepted for publication in Physical Review Letter

    Bragg spectroscopy of a superfluid Bose-Hubbard gas

    Full text link
    Bragg spectroscopy is used to measure excitations of a trapped, quantum-degenerate gas of 87Rb atoms in a 3-dimensional optical lattice. The measurements are carried out over a range of optical lattice depths in the superfluid phase of the Bose-Hubbard model. For fixed wavevector, the resonant frequency of the excitation is found to decrease with increasing lattice depth. A numerical calculation of the resonant frequencies based on Bogoliubov theory shows a less steep rate of decrease than the measurements.Comment: 11 pages, 4 figure
    corecore