10 research outputs found

    Far-ultraviolet Observations of the North Ecliptic Pole with SPEAR

    Full text link
    We present SPEAR/FIMS far-ultraviolet observations near the North Ecliptic Pole. This area, at b~30 degrees and with intermediate HI column, seems to be a fairly typical line of sight that is representative of general processes in the diffuse ISM. We detect a surprising number of emission lines of many elements at various ionization states representing gas phases from the warm neutral medium (WNM) to the hot ionized medium (HIM). We also detect fluorescence bands of H2, which may be due to the ubiquitous diffuse H2 previously observed in absorption.Comment: 5 pages, 3 figures, Accepted for publication in ApJ Letter

    Fluctuations in the ionosphere related to Honshu Twin Large Earthquakes of September 2004 observed by the DEMETER and CHAMP satellites

    No full text
    International audienceWhile investigating possible precursory signatures of large earthquakes in the ionospheric data measured by the DEMETER and CHAMP satellites, we found ionospheric disturbances related to large earthquakes (M=7.2 and 7.4) that occurred on September 2004 near the south coast of Honshu, Japan. The satellite data were statistically compared with an empirical model and local averages of the large set of data in the study period. A fluctuation in the electron density above the epicenter was observed roughly 2weeks before the main earthquakes. Surveys of the space weather and geomagnetic activities suggest that these fluctuations were not caused by changes in space conditions or by a geomagnetic storm. The features were also distinct from well-known natural ionospheric anomalies. In addition, a peak-like profile in the ion temperature and lowered O+ density around the region of the epicenter was observed a week before the main earthquakes along the satellite passes whose longitudes are close to the epicenter. The features are more apparent when they are compared with the data more distant from the epicenter, suggesting that the disturbances occur along the geomagnetic field lines. The concurrent measurements of the ion drift velocity suggest the fluctuations were triggered by the vertical plasma drift. The observed anomalies disappeared ∼2 weeks after the quakes. According to the current theories on the seismo-ionospheric coupling, the horizontal electric field at the lower boundary of the ionosphere should have been strengthened by the seismic activity in order for the ionospheric plasma movements above the epicenter and its geomagnetic conjugate regions to trigger the observed ionospheric anomalies

    Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

    No full text
    The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth’s surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ~7×105 more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves

    Heavy-Ion Radiation Characteristics of DDR2 Synchronous Dynamic Random Access Memory Fabricated in 56 nm Technology

    No full text
    We developed a mass-memory chip by staking 1 Gbit double data rate 2 (DDR2) synchronous dynamic random access memory (SDRAM) memory core up to 4 Gbit storage for future satellite missions which require large storage for data collected during the mission execution. To investigate the resistance of the chip to the space radiation environment, we have performed heavy-ion-driven single event experiments using Heavy Ion Medical Accelerator in Chiba medium energy beam line. The radiation characteristics are presented for the DDR2 SDRAM (K4T1G164QE) fabricated in 56 nm technology. The statistical analyses and comparisons of the characteristics of chips fabricated with previous technologies are presented. The cross-section values for various single event categories were derived up to ~80 MeVcm2/mg. Our comparison of the DDR2 SDRAM, which was fabricated in 56 nm technology node, with previous technologies, implies that the increased degree of integration causes the memory chip to become vulnerable to single-event functional interrupt, but resistant to single-event latch-up

    Characteristics of the Plasma Source for Ground Ionosphere Simulation Surveyed by Disk-Type Langmuir Probe

    No full text
    A space plasma facility has been operated with a back-diffusion-type plasma source installed in a mid-sized vacuum chamber with a diameter of ~1.5 m located in Satellite Technology Research Center (SaTReC), Korea Advanced Institute of Science and Technology (KAIST). To generate plasma with a temperature and density similar to the ionospheric plasma, nickel wires coated with carbonate solution were used as filaments that emit thermal electrons, and the accelerated thermal electrons emitted from the heated wires collide with the neutral gas to form plasma inside the chamber. By using a disk-type Langmuir probe installed inside the vacuum chamber, the generation of plasma similar to the space environment was validated. The characteristics of the plasma according to the grid and plate anode voltages were investigated. The grid voltage of the plasma source is realized as a suitable parameter for manipulating the electron density, while the plate voltage is suitable for adjusting the electron temperature. A simple physical model based on the collision cross-section of electron impact on nitrogen molecule was established to explain the plasma generation mechanism

    Variation of Floating Potential in the Topside Ionosphere Observed by STSAT-1

    No full text
    In this study, we investigated the effect of space plasmas on the floating potential variation of a low-altitude, polar-orbiting satellite using the Langmuir Probe (LP) measurement onboard the STSAT-1 spacecraft. We focused on small potential drops, for which the estimation of plasma density and temperature from LP is available. The floating potential varied according to the variations of plasma density and temperature, similar to the previously reported observations. Most of the potential drops occurred around the nightside auroral region. However, unlike the previous studies where large potential drops were observed with the precipitation of auroral electrons, the potential drops occurred before or after the precipitation of auroral electrons. Statistical analysis shows that the potential drops have good correlation with the temperature increase of cold electrons, which suggests the small potential drops be mainly controlled by the cold ionospheric plasmas

    Opening New Horizons with the L4 Mission: Vision and Plan

    No full text
    The Sun-Earth Lagrange point L4 is considered as one of the unique places where the solar activity and heliospheric environment can be observed in a continuous and comprehensive manner. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of the Sun-Earth and Sun-Moon connections from he perspective of remote-sensing observations. In-situ measurements of the solar radiation, solar wind, and heliospheric magnetic field are critical components necessary for monitoring and forecasting the radiation environment as it relates to the issue of safe human exploration of the Moon and Mars. A dust detector on the ram side of the spacecraft allows for an unprecedented detection of local dust and its interactions with the heliosphere. The purpose of the present paper is to emphasize the importance of L4 observations as well as to outline a strategy for the planned L4 mission with remote and in-situ payloads onboard a Korean spacecraft. It is expected that the Korean L4 mission can significantly contribute to improving the space weather forecasting capability by enhancing the understanding of heliosphere through comprehensive and coordinated observations of the heliosphere at multi-points with other existing or planned L1 and L5 missions.ISSN:1225-1534ISSN:2287-693
    corecore