5 research outputs found

    Conservation targets for viable species assemblages in Canada: are percentage targets appropriate?

    Get PDF
    Percentage targets for conservation have become a popular tool (advocated in both the scientific literature and the conservation community) for setting minimum goals for the amount of land to be set aside as protected areas. However, there is little literature to support a consistent percentage target that might be widely applied. Moreover, most percentage targets have not taken into account issues of species persistence. A recent study of herbivores in Kruger National Park took into account issues of representation and persistence in setting conservation targets and found that results were consistently about 50% and were unaffected by different permutations of the reserve selection process. Here, we carry out a similar analysis for representation of mammals within sites that are predicted to allow for their persistence, across eight ecologically defined regions in Canada to test whether we see similar consistent patterns emerging. We found that percentage targets varied with the different permutations of the reserve selection algorithms, both within and between the study regions. Thus, we conclude that the use of percentage targets is not an appropriate conservation strategy

    Differential mortality risks associated with PM<sub>2.5</sub> components: A multi-country, multi-city study.

    No full text
    BACKGROUND: The association between fine particulate matter (PM2.5) and mortality widely differs between as well as within countries. Differences in PM2.5 composition can play a role in modifying the effect estimates, but there is little evidence about which components have higher impacts on mortality. METHODS: We applied a two-stage analysis on data collected from 210 locations in 16 countries. In the first stage, we estimated location-specific relative risks (RR) for mortality associated with daily total PM2.5 through time series regression analysis. We then pooled these estimates in a meta-regression model that included city-specific logratio-transformed proportions of seven PM2.5 components as well as meta-predictors derived from city-specific socio-economic and environmental indicators. RESULTS: We found associations between RR and several PM2.5 components. Increasing the ammonium (NH4+) proportion from 1% to 22%, while keeping a relative average proportion of other components, increased the RR from 1.0063 (95%CI: 1.0030-1.0097) to 1.0102 (95%CI:1.0070-1.0135). Conversely, an increase in nitrate (NO3-) from 1% to 71% resulted in a reduced RR, from 1.0100 (95%CI: 1.0067-1.0133) to 1.0037 (95%CI: 0.9998- 1.0077). Differences in composition explained a substantial part of the heterogeneity in PM2.5 risk. CONCLUSIONS: These findings contribute to the identification of more hazardous emission sources. Further work is needed to understand the health impacts of PM2.5 components and sources given the overlapping sources and correlations among many components
    corecore