3 research outputs found

    Hard X-ray USAXS Fourier Transform Holography

    No full text
    We report on a Fourier transform holography study, employing hard X-ray energies at a 3rd generation storage ring. Nano-structures of various sizes and shapes have been measured in ultra small angle x-ray scattering configuration reaching a resolution in the holographic reconstructions of about 50 nm. Reliable holograms have been obtained with 6.9×106 incident photons. Our results provide an important step forward towards routine split-pulse Fourier transform holography measurements at FEL sources and 4th generation ultralow-emittance sources.

    Mapping the 3D position of battery cathode particles in Bragg coherent diffractive imaging

    No full text
    In Bragg coherent diffractive imaging, the precise location of the measured crystals in the interior of the sample is usually missing. Obtaining this information would help the study of the spatially dependent behavior of particles in the bulk of inhomogeneous samples, such as extra‐thick battery cathodes. This work presents an approach to determine the 3D position of particles by precisely aligning them at the instrument axis of rotation. In the test experiment reported here, with a 60 ”m‐thick LiNi0.5Mn1.5O4 battery cathode, the particles were located with a precision of 20 ”m in the out‐of‐plane direction, and the in‐plane coordinates were determined with a precision of 1 ”m.A method to determine the 3D position of particles in Bragg coherent diffractive imaging experiments is proposed. Test measurements demonstrate depth‐resolution with a precision of 20 ”m along the beam. imag

    Note: Soft X-ray transmission polarizer based on ferromagnetic thin films

    No full text
    A transmission polarizer for producing elliptically polarized soft X-ray radiation from linearly polarized light is presented. The setup is intended for use at synchrotron and free-electron laser beamlines that do not directly offer circularly polarized light for, e.g., X-ray magnetic circular dichroism (XMCD) measurements or holographic imaging. Here, we investigate the degree of ellipticity upon transmission of linearly polarized radiation through a cobalt thin film. The experiment was performed at a photon energy resonant to the Co L3-edge, i.e., 778 eV, and the polarization of the transmitted radiation was determined using a polarization analyzer that measures the directional dependence of photo electrons emitted from a gas target. Elliptically polarized radiation can be created at any absorption edge showing the XMCD effect by using the respective magnetic element
    corecore