7 research outputs found

    The Casimir effect for parallel plates at finite temperature in the presence of one fractal extra compactified dimension

    Full text link
    We discuss the Casimir effect for massless scalar fields subject to the Dirichlet boundary conditions on the parallel plates at finite temperature in the presence of one fractal extra compactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sufficiently high, the sign of the Casimir energy remains negative no matter how great the scale dimension δ\delta is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.Comment: 14 pages, 2 figure

    Finite temperature Casimir effect of massive fermionic fields in the presence of compact dimensions

    Full text link
    We consider the finite temperature Casimir effect of a massive fermionic field confined between two parallel plates, with MIT bag boundary conditions on the plates. The background spacetime is Mp+1×TqM^{p+1}\times T^q which has qq dimensions compactified to a torus. On the compact dimensions, the field is assumed to satisfy periodicity boundary conditions with arbitrary phases. Both the high temperature and the low temperature expansions of the Casimir free energy and the force are derived explicitly. It is found that the Casimir force acting on the plates is always attractive at any temperature regardless of the boundary conditions assumed on the compact torus. The asymptotic limits of the Casimir force in the small plate separation limit are also obtained.Comment: 10 pages, accepted by Phys. Lett.

    Casimir Effect in Spacetime with Extra Dimensions -- From Kaluza-Klein to Randall-Sundrum Models

    Full text link
    In this article, we derive the finite temperature Casimir force acting on a pair of parallel plates due to a massless scalar field propagating in the bulk of a higher dimensional brane model. In contrast to previous works which used approximations for the effective masses in deriving the Casimir force, the formulas of the Casimir force we derive are exact formulas. Our results disprove the speculations that existence of the warped extra dimension can change the sign of the Casimir force, be it at zero or any finite temperature.Comment: 9 pages, 3 figure. Final version accepted by Phys. Lett.

    Effective Electromagnetic Lagrangian at Finite Temperature and Density in the Electroweak Model

    Full text link
    Using the exact propagators in a constant magnetic field, the effective electromagnetic Lagrangian at finite temperature and density is calculated to all orders in the field strength B within the framework of the complete electroweak model, in the weak coupling limit. The partition function and free energy are obtained explicitly and the finite temperature effective coupling is derived in closed form. Some implications of this result, potentially interesting to astrophysics and cosmology, are discussed.Comment: 14 pages, Revtex

    Casimir effect of electromagnetic field in Randall-Sundrum spacetime

    Full text link
    We study the finite temperature Casimir effect on a pair of parallel perfectly conducting plates in Randall-Sundrum model without using scalar field analogy. Two different ways of interpreting perfectly conducting conditions are discussed. The conventional way that uses perfectly conducting condition induced from 5D leads to three discrete mode corrections. This is very different from the result obtained from imposing 4D perfectly conducting conditions on the 4D massless and massive vector fields obtained by decomposing the 5D electromagnetic field. The latter only contains two discrete mode corrections, but it has a continuum mode correction that depends on the thicknesses of the plates. It is shown that under both boundary conditions, the corrections to the Casimir force make the Casimir force more attractive. The correction under 4D perfectly conducting condition is always smaller than the correction under the 5D induced perfectly conducting condition. These statements are true at any temperature.Comment: 20 pages, 4 figure

    The Casimir effect for parallel plates in the spacetime with a fractal extra compactified dimension

    Full text link
    The Casimir effect for massless scalar fields satisfying Dirichlet boundary conditions on the parallel plates in the presence of one fractal extra compactified dimension is analyzed. We obtain the Casimir energy density by means of the regularization of multiple zeta function with one arbitrary exponent. We find a limit on the scale dimension like δ>1/2\delta>1/2 to keep the negative sign of the renormalized Casimir energy which is the difference between the regularized energy for two parallel plates and the one with no plates. We derive and calculate the Casimir force relating to the influence from the fractal additional compactified dimension between the parallel plates. The larger scale dimension leads to the greater revision on the original Casimir force. The two kinds of curves of Casimir force in the case of integer-numbered extra compactified dimension or fractal one are not superposition, which means that the Casimir force show whether the dimensionality of additional compactified space is integer or fraction.Comment: 9 pages, 3 figure
    corecore