10 research outputs found

    Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells

    Get PDF
    We describe a protocol for the generation of a functional and transplantable corneal epithelium derived from human induced pluripotent stem (iPS) cells. When this protocol is followed, a proportion of iPS cells spontaneously form circular colonies, each of which is composed of four concentric zones. Cells in these zones have different morphologies and immunostaining characteristics, resembling neuroectoderm, neural crest, ocular-surface ectoderm, or surface ectoderm. We have named this 2D colony a 'SEAM' (self-formed ectodermal autonomous multizone), and previously demonstrated that cells within the SEAM have the potential to give rise to anlages of different ocular lineages, including retinal cells, lens cells, and ocular-surface ectoderm. To investigate the translational potential of the SEAM, cells within it that resemble ocular-surface epithelia can be isolated by pipetting and FACS sorting into a population of corneal epithelial-like progenitor cells. These can be expanded and differentiated to form an epithelial layer expressing K12 and PAX6, and able to recover function in an animal model of corneal epithelial dysfunction after surgical transplantation. The whole protocol, encompassing human iPS cell preparation, autonomous differentiation, purification, and subsequent differentiation, takes between 100 and 120 d, and is of potential use to researchers with an interest in eye development and/or ocular-surface regeneration. Experience with human iPS cell culture and sorting via FACS will be of benefit for researchers performing this protocol

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    PVP2006-93622 FLUID-ELASTIC ANALYSIS AND DESIGN OF SLOSHING IN FLOATING-ROOF TANKS SUBJECTED TO EARTHQUAKE MOTIONS

    No full text
    ABSTRACT During the 2003 Tokachi-oki, Japan earthquake, many oil tanks located in Tomakomai were damaged by sloshing due to the long-period strong ground motion. It is especially noted that the single-deck floating-roofs of seven tanks collapsed as they sank with the buckling failure of the pontoons, which resulted in fire accidents of two tanks. To clarify the cause of such damages, it is necessary to investigate in detail the sloshing behaviors in consideration of the existence of a floating-roof. However, so far most of the researches on sloshing have treated only the case of a free surface or the case of a rigid floatingroof, and have not considered the case of an elastic floatingroof, which is used in an actual tank. In this paper, the authors discuss the problem on the basis of fluid-elastic vibration analysis, that is, they investigate the sloshing behaviors of actual floating-roof models with singledeck type and double-deck type and indicate several important viewpoints on the seismic design which has hardly been taken into account hitherto

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    No full text
    corecore