72 research outputs found

    αC including a novel three- component non-heme diiron monooxygenase system

    Get PDF
    Please click Additional Files below to see the full abstrac

    Polar Antiferromagnets Produced with Orbital-Order

    Full text link
    Polar magnetic states are realized in pseudocubic manganite thin films fabricated on high-index substrates, in which a Jahn-Teller (JT) distortion remains an active variable. Several types of orbital-orders were found to develop large optical second harmonic generation, signaling broken-inversion-symmetry distinct from their bulk forms and films on (100) substrates. The observed symmetry-lifting and first-principles calculation both indicate that the modified JT q2 mode drives Mn-site off-centering upon orbital order, leading to the possible cooperation of "Mn-site polarization" and magnetism.Comment: 5 pages, 4 figure

    A three-component monooxygenase from Rhodococcus wratislaviensis may expand industrial applications of bacterial enzymes

    Get PDF
    地球外有機化合物に対する微生物代謝の解明から全く新規な酵素系を発見 --生命分子進化の理解や産業応用に期待--. 京都大学プレスリリース. 2021-01-20.The high-valent iron-oxo species formed in the non-heme diiron enzymes have high oxidative reactivity and catalyze difficult chemical reactions. Although the hydroxylation of inert methyl groups is an industrially promising reaction, utilizing non-heme diiron enzymes as such a biocatalyst has been difficult. Here we show a three-component monooxygenase system for the selective terminal hydroxylation of α-aminoisobutyric acid (Aib) into α-methyl-D-serine. It consists of the hydroxylase component, AibH1H2, and the electron transfer component. Aib hydroxylation is the initial step of Aib catabolism in Rhodococcus wratislaviensis C31-06, which has been fully elucidated through a proteome analysis. The crystal structure analysis revealed that AibH1H2 forms a heterotetramer of two amidohydrolase superfamily proteins, of which AibHm2 is a non-heme diiron protein and functions as a catalytic subunit. The Aib monooxygenase was demonstrated to be a promising biocatalyst that is suitable for bioprocesses in which the inert C–H bond in methyl groups need to be activated
    corecore