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Abstract
Background We developed a machine learning (ML) model to predict the risk of lymph node metastasis (LNM) in patients 
with early gastric cancer (EGC) who did not meet the existing Japanese endoscopic curability criteria and compared its 
performance with that of the most common clinical risk scoring system, the eCura system.
Methods We used data from 4,042 consecutive patients with EGC from 21 institutions who underwent endoscopic sub-
mucosal dissection (ESD) and/or surgery between 2010 and 2021. All resected EGCs were histologically confirmed not to 
satisfy the current Japanese endoscopic curability criteria. Of all patients, 3,506 constituted the training cohort to develop 
the neural network-based ML model, and 536 constituted the validation cohort. The performance of our ML model, as 
measured by the area under the receiver operating characteristic curve (AUC), was compared with that of the eCura system 
in the validation cohort.
Results LNM rates were 14% (503/3,506) and 7% (39/536) in the training and validation cohorts, respectively. The ML 
model identified patients with LNM with an AUC of 0.83 (95% confidence interval, 0.76–0.89) in the validation cohort, 
while the eCura system identified patients with LNM with an AUC of 0.77 (95% confidence interval, 0.70–0.85) (P = 0.006, 
DeLong’s test).
Conclusions Our ML model performed better than the eCura system for predicting LNM risk in patients with EGC who did 
not meet the existing Japanese endoscopic curability criteria.
Mini‑abstract We developed a neural network-based machine learning model that predicts the risk of lymph node metastasis 
in patients with early gastric cancer who did not meet the endoscopic curability criteria.

Keywords Early gastric cancer · Endoscopic submucosal dissection · Lymph node metastasis · Machine learning · Artificial 
intelligence

Introduction

Endoscopic submucosal dissection (ESD) is the standard 
treatment for early gastric cancer (EGC) in East Asia [1–5]. 
En bloc excision of cancer allows for a detailed histopatho-
logical evaluation, whereby treatment curability is deter-
mined. In the Japanese guidelines, when EGC resected by 
ESD does not fulfill the curability criteria, the resection 
is classified as endoscopic curability C (i.e., noncurative 
resection), which is further subclassified into endoscopic 

curability C-1 and C-2 [6]. Because the latter cases poten-
tially have a risk of lymph node metastasis (LNM), addi-
tional surgery with lymphadenectomy is recommended. 
However, a recent meta-analysis reported that LNM was 
found in only 8.0% of patients with an endoscopic curabil-
ity of C-2 [7]. As the risk of LNM varies among patients 
within the endoscopic curability C-2 group, subjecting all 
patients to additional surgery results in overtreatment. To 
minimize unnecessary additional surgeries, a precise pre-
diction method for the LNM risk of EGCs categorized as 
endoscopic curability C-2 is needed.
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For this purpose, we focused on machine learning (ML), 
which has been adopted to build accurate prediction models 
in various fields of medicine, including gastroenterology 
[8–12]. ML is a branch of artificial intelligence that uses 
algorithms to enable computers to learn automatically from 
data and determine the rules behind them. Once an ML algo-
rithm is trained, it can predict unknown outcomes from new 
data with high accuracy. Currently, several scoring models 
stratify the risk of LNM in patients with EGC; however, all 
use conventional statistical analyses [13–16]. We hypoth-
esized that ML models might perform better than existing 
models established using statistical analyses.

This study aimed to develop an ML-based risk prediction 
model for LNM in patients with EGC classified as endo-
scopic curability C-2 and compare its performance with that 
of the existing scoring model. Among the existing models, 
the “eCura system” is the most common risk-scoring model 
for LNM of EGC classified as endoscopic curability C-2 
[14], and is currently recommended in the Japanese guide-
lines [6]. Hence, in this study, we chose this model for 
comparison.

Methods

Patients

This multicenter retrospective study was conducted at 21 
institutions. The study was approved by the institutional 
review board of Osaka University (approval number: 22171, 
approval date: July 26, 2022) and the participating hospitals 
and was performed in accordance with the guidelines out-
lined in the Declaration of Helsinki.

We used the data of consecutive EGC patients who 
were treated with surgery, ESD with additional surgery, 
or ESD alone between 2010 and 2021 and were histologi-
cally confirmed as having endoscopic curability C-2. EGC 
was defined as an adenocarcinoma limited to the mucosa 
or submucosa, irrespective of LNM [17]. Exclusion criteria 
were as follows: special histological types of gastric cancer 
(e.g., neuroendocrine neoplasms, carcinoma with lymphoid 
stroma, adenocarcinoma of the fundic gland type [18, 19]), 
esophagogastric junction cancer, synchronous advanced can-
cer (in the stomach or other organs), synchronous EGC with 
endoscopic curability C-2, postoperative stomach, and miss-
ing data. Patients in the surgery group who had undergone 
preoperative chemotherapy were excluded. For the ESD-
alone group, patients with follow-up periods < 3 years, not 
including patients who died of known causes within that 
time, or those who received adjuvant chemotherapy after 
ESD alone were excluded. Finally, cases with no lymphad-
enectomy in a surgical procedure (i.e., only local resection) 
were excluded even if the patients could be followed up 

for ≥ 3 years, because local resection of the stomach was 
described as an investigational treatment in Japanese gas-
tric cancer treatment guidelines [6] and was not commonly 
performed. There was thus a possibility of taking an unusual 
course of events during the surveillance.

Definition of endoscopic curability C‑2

After endoscopic or surgical resection, histopathological 
evaluation was performed according to the Japanese clas-
sification system at each institution [17]. Specimens resected 
by ESD were sectioned at 2 mm intervals, whereas surgically 
resected specimens were sectioned at 5 mm intervals. Lym-
phovascular involvement was first examined by hematoxylin 
and eosin staining, and in cases with inconclusive findings, 
immunohistochemical staining was added.

Resected EGC was defined as under the curative state 
when it was resected in one piece, had no cancer-positive 
margins or lymphovascular involvement, and had one of the 
following conditions: (i) mucosal differentiated cancer with 
no ulceration; (ii) mucosal differentiated cancer with ulcera-
tion, ≤ 30 mm in diameter; (iii) undifferentiated, mucosal 
cancer without ulceration, ≤ 20 mm in diameter; or (iv) shal-
low (< 500 μm from the muscularis mucosae) submucosal 
differentiated cancer, ≤ 30 mm in diameter.

Otherwise, the resected EGC was considered to be in a 
state of endoscopic curability C (noncurative). If a positive 
horizontal margin was the only noncurative factor, it was 
categorized as endoscopic curability C-1. Other conditions 
were categorized as endoscopic curability C-2, and we only 
included patients with this histopathological character. The 
above-mentioned definition for the endoscopic curability 
C-2 was based on Japanese gastric cancer treatment guide-
lines [6].

Data collection

The following data were collected: age, sex, tumor loca-
tion, size, histological type, invasion depth, histopatho-
logical ulceration, lymphatic involvement, and vascular 
involvement. Histological types were classified as follows: 
(i) well-differentiated tubular adenocarcinoma (tub1); (ii) 
moderately differentiated tubular adenocarcinoma (tub2); 
(iii) papillary adenocarcinoma (pap); (iv) poorly differenti-
ated adenocarcinoma (por); (v) signet-ring cell carcinoma 
(sig); and (vi) mucinous adenocarcinoma (muc). When 
more than one histological type was present in the tumor, 
the first two dominant histological types were collected in 
descending order (tub2 > tub1). Well-differentiated tubular 
adenocarcinoma (tub1), tub2, and pap were categorized as 
differentiated types, and por, sig, and muc were categorized 
as undifferentiated types. If the lesion had both types of can-
cer components, it was regarded as a mixed type. Invasion 



A machine learning model for predicting the lymph node metastasis of early gastric cancer not…

depth was classified into three categories: tumor limited to 
the mucosa (M), tumor invading the submucosa to a depth 
of < 500 μm from the muscularis mucosae (SM1), and tumor 
invading the submucosa to a depth ≥ 500 μm (SM2). Vertical 
margins were also investigated in patients who underwent 
ESD (with or without additional surgery). For the ESD-
alone group, the development of metastatic recurrence in 
the lymph nodes and/or other organs during follow-up was 
also surveyed. Data were obtained from the medical records 
of each participating institution between August 2022 and 
December 2022.

Definitions of outcome

The outcome selected to develop the ML model was LNM. 
For the surgery or ESD with additional surgery groups, 
it was defined as the presence of histologically identified 
metastases in the resected lymph nodes. For the ESD-alone 
group, it was defined as the development of metastatic recur-
rence in the lymph nodes and/or other organs diagnosed by 
computed tomography during follow-up. When patients in 
the ESD-alone group did not develop metastatic recurrence 
during a follow-up period of ≥ 3 years, LNM was consid-
ered negative. Patients with follow-up periods < 3 years were 
excluded from the ESD-alone group, except for those who 
died of known causes.

Development of the ML model

We created two datasets: a training cohort used to build 
the ML model and a validation cohort used to compare the 
performance of the ML model with that of the eCura sys-
tem. The former included all patient groups (surgery, ESD 
with additional surgery, or ESD alone), whereas the latter 
included only patients who underwent ESD (with or without 
additional surgery). The reasons for this were as follows: (i) 
the actual prediction target for our ML model and the eCura 
system were patients who underwent noncurative ESD, and 
(ii) in the eCura system, a positive vertical margin was set 
as a risk factor, which is assessable only in lesions resected 
by ESD. We randomly separated patients who underwent 
ESD (with or without additional surgery) into training and 
validation groups.

The ML model was constructed as a neural network with 
two hidden layers using Scikit-learn (https:// scikit- learn. 
org), an ML library for Python. The training data were 
divided into four parts during the model training process, 
and parameter tuning was performed through fourfold cross-
validation. We used the Adam optimizer for optimization. 
After parameter tuning, the first and second hidden layers 
comprised 6 and 18 nodes, respectively. The final inference 
model was an ensemble model (simple averaging) of the 
four models obtained through fourfold cross-validation. 

Hyperparameters of our ML model are listed in Supplemen-
tary Table S1.

For model development, we initially used age, sex, 
tumor location, lesion size, dominant histology, presence 
or absence of mixed-type histology, invasion depth, lym-
phatic involvement, vascular involvement, histopathological 
ulceration, vertical margin, and treatment method as input 
parameters. Through parameter tuning within the training 
dataset, the best predictions were achieved using the follow-
ing seven factors: lesion size, dominant histology (tub2 or 
others), presence or absence of mixed-type histology, inva-
sion depth (M, SM1, or SM2), lymphatic involvement (posi-
tive or negative), vascular involvement (positive or nega-
tive), and treatment method (surgery, or ESD with/without 
additional surgery). Most of our data were encoded as binary 
variable (i.e., 0 or 1) except for invasion depth and lesion 
size. For invasion depth, ordinal encoding was performed, 
such as 1 for SM2, 0.5 for SM1, and 0 for M. Lesion size 
was transformed to be in a range from 0 to 1 by dividing the 
raw data by 100.

Statistical analysis

The Chi-squared and Fisher exact tests were used to compare 
categorical data, and the Kruskal–Wallis and Mann–Whit-
ney U tests were used to compare continuous data. The area 
under the receiver operating characteristic curve (AUC) was 
used to measure the performance of the prediction models, 
and DeLong’s test was used to compare the AUCs. P val-
ues < 0.05 were considered statistically significant. Analyses 
were performed using JMP Pro version 16 (SAS Institute, 
Cary, NC, USA) or EZR version 1.61 (Saitama Medical 
Center, Jichi Medical University, Japan).

Results

Study cohort

Figure 1 shows the flowchart of patient selection. Among 
the 4,873 patients initially identified, 831 were excluded, 
and 4,042 were finally included: 3,506 patients in the train-
ing cohort and 536 patients in the validation cohort. In the 
training cohort, 2,970 patients (85%) underwent surgery, 414 
(12%) underwent ESD with additional surgery, and 122 (3%) 
underwent ESD alone. In the validation cohort, 401 patients 
(75%) underwent ESD with additional surgery, and 135 (25%) 
underwent ESD alone. In the ESD-alone group, the median 
follow-up periods for the training and validation cohorts were 
57 months (interquartile range [IQR] 41–73) and 55 months 
(IQR 41–74), respectively. Table 1 presents the characteristics 
of the training and validation cohorts. LNM was observed in 
503 (14%) and 39 (7%) patients in the training and validation 

https://scikit-learn.org
https://scikit-learn.org


 M. Kato et al.

cohorts, respectively. The patient and lesion characteristics 
according to treatment are shown in Supplementary Table S2.

Performance of the ML model

The ML model identified patients with LNM with an 
AUC of 0.83 [95% confidence interval (CI), 0.76–0.89] 
in the validation cohort, while the eCura system identified 
patients with LNM with an AUC of 0.77 (95% CI 0.70–0.85) 
(P = 0.006, DeLong’s test) (Fig. 2). At cutoff scores where 
the ML model and the eCura system identified patients with 
LNM with 100% sensitivity (i.e., a score of 0.02778 for the 
ML model and 0 for the eCura system), the specificity values 
were 24% (95% CI 20%–28%) for the ML model versus 0% 
(95% CI, 0.0%–1.1%) for the eCura system. This indicates 
that the ML model could reduce unnecessary surgery by up 
to 24% with a minimized risk of overlooking LNM, whereas 
no patients could avoid surgery with the eCura system.

The permutation feature importance of the seven vari-
ables used in the ML model was calculated for the training 
cohort (Fig. 3), and lymphatic involvement was found to be 
the most important factor for LNM.

A web application of the ML model

We developed a web application to make our ML model 
freely available for clinicians (https:// www. med. osaka-u. ac. 
jp/ pub/ gh/ egc- lnm- predi ction. html).

Discussion

Our novel neural-network-based ML model derived from 
a large multi-institutional cohort identified the presence of 
LNM in patients with EGC categorized as endoscopic cur-
ability C-2 better than the most common risk-scoring model 
in Japan (i.e., the eCura system). Notably, the ML model 
performed better than the eCura system in choosing very 
low-risk patients who could be safely managed with only 
ESD. Our ML model has the potential to minimize unneces-
sary surgeries after gastric ESD.

Several researchers have developed ML models that pre-
dict the risk of LNM in patients with EGC [20–24]; however, 
these studies include many lesions satisfying the endoscopic 
curability criteria that have no risk of LNM. In contrast, we 
used only EGC data categorized as endoscopic curability 
C-2 (i.e., lesions at a high risk of LNM). Considering that 
prediction models are used for patients who are classified as 
endoscopic curability C-2 after gastric ESD, our ML model 
is more suitable and reliable than those previously reported.

Our study had following strengths. First, we directly com-
pared the new ML model with the eCura system, the current 
most common risk-scoring model recommended presently 
in the Japanese gastric cancer treatment guidelines [6]. The 
eCura system was developed based on data from patients 
who underwent surgery after noncurative ESD [14]. Hence, 
we excluded patients who underwent surgery as the first 
treatment from the validation cohort to allow the eCura 

Fig. 1  Patient selection flowchart. Pts patients; ESD endoscopic submucosal dissection; EGC early gastric cancer; LNM lymph node metastasis
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Table 1  Characteristics of the 
training and validation cohorts

Data are expressed as the median (range) or number (%)
a  Shows only the results of the lesions resected by ESD with/without additional surgery
b  Data are unavailable for 46 and 31 lesions in the training and validation cohorts, respectively
ESD endoscopic submucosal dissection; M limited to the mucosa; SM1 submucosal invasion < 500  μm; 
SM2 submucosal invasion ≥ 500 μm; tub1 well-differentiated tubular adenocarcinoma; tub2 moderately dif-
ferentiated tubular adenocarcinoma; pap papillary adenocarcinoma; por poorly differentiated adenocarci-
noma; sig signet-ring cell carcinoma; muc mucinous adenocarcinoma

Training cohort Validation cohort P value

n = 3506 n = 536
Age, years 70 (26—94) 73 (37—90)  < 0.0001
Sex  < 0.0001
 Male 2264 (65) 410 (76)
 Female 1242 (35) 126 (24)

Treatment
 Surgery 2970 (85) 0 (0)  < 0.0001
 ESD with additional surgery 414 (12) 401 (75)
 ESD alone 122 (3) 135 (25)

Location  < 0.0001
 Upper 582 (17) 130 (24)
 Middle 1689 (48) 226 (42)
 Lower 1235 (35) 180 (34)
 Size, mm 30 (2—185) 23 (5—103)  < 0.0001

Invasion depth 0.006
 M 860 (25) 101 (19)
 SM1 418 (12) 80 (15)
 SM2 2228 (63) 355 (66)

Histologic type
 Differentiated type 0.99

  tub1 dominant 922 (26) 234 (44)
  tub2 dominant 514 (15) 132 (25)
  pap dominant 60 (2) 15 (3)

 Undifferentiated type 0.001
  por dominant 778 (22) 29 (5)
  sig dominant 383 (11) 35 (7)
  muc dominant 11 (1) 0 (0)

 Mixed type 0.05
  Differentiated type dominant 520 (15) 66 (12)
  Undifferentiated type dominant 318 (9) 25 (4)

 Lymphatic involvement 0.86
  Positive 1183 (34) 183 (34)
  Negative 2323 (66) 353 (66)

 Vascular involvement 0.008
  Positive 664 (19) 76 (14)
  Negative 2842 (81) 460 (86)

  Ulcerationa,b 0.88
  Positive 138 (28) 140 (28)
  Negative 352 (72) 365 (72)

 Vertical  margina 0.75
  Positive 72 (13) 64 (12)

  Negative 432 (81) 438 (82)
  Unclear 32 (6) 34 (6)

 Lymph node metastasis  < 0.0001
   Positive 503 (14) 39 (7)
    Negative 3003 (86) 497 (93)
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system to demonstrate its true performance. In this fair situa-
tion, our ML model showed a significantly higher AUC than 
that of the eCura system (0.83 versus 0.77, P = 0.006). The 
predictive ability of the eCura system shown in this study 
(AUC of 0.77) was almost the same as the original results 
shown by the developers (Hatta W, et al.) (AUC of 0.74) 
[14], which guarantees the credibility of our results. Second, 
we included information on the presence of mixed-type his-
tology in the ML model because it is a potential predictor 
of LNM in EGC [13, 25–27]. In fact, analysis of feature 
importance showed mixed-type histology as the fourth-most 

important factor in our model (Fig. 3). Since the eCura sys-
tem does not evaluate information about mixed-type histol-
ogy, we believe that this difference conferred better results 
with our model.

One of the problems with the eCura system was that the 
number of undifferentiated-type EGCs, which are often 
treated by primary surgery, was small in the development 
cohort (14%, 150/1101 cases). Thus, Hatta et al. reported 
that the risk of undifferentiated-type histology may be under-
estimated in the eCura system [28]. As a measure for this 
problem, we decided to include primary surgical cases in the 
training cohort. As a result, we could increase the number 
of patients with undifferentiated-type EGC (40%, 1490/3506 
cases). It might be ideal to increase the number of patients 
with undifferentiated-type EGC using only ESD cases. How-
ever, due to the limited number of ESD cases available, we 
decided to use primary surgical cases as an alternative.

Although a positive vertical margin is regarded as a risk 
factor for LNM in the eCura system, we did not include 
this factor in our ML model because it did not improve the 
predictive power (data not shown). This might be because 
we used many surgery cases in the training cohort in which 
the vertical margin was not evaluable.

We classified the histologic types of EGC into two 
groups, tub2 or others, for our final ML model. Other clas-
sifications, such as differentiated versus undifferentiated, 
did not show better performance. One reason for this could 
be that tub2 was the most frequent histologic type among 
LNM-positive EGCs (41%, 204/503) in the training cohort 
in this study.

When our ML model is used in clinical settings, the 
worst scenario is to overlook LNM because it may eventu-
ally cause metastatic recurrence. Once this occurs, salvage 
surgery is almost impossible and can be fatal [29]. There-
fore, we chose the cutoff score of the ML model by setting 
the sensitivity to 100% in the validation cohort. At 100% 
sensitivity, the ML model had a specificity of 24%, while 
the eCura system had a specificity of 0%. This means that 
among the 497 patients who did not have LNM in the vali-
dation cohort, the ML model could help 120 patients (24%) 
avoid unnecessary surgery, whereas none (0%) could avoid 
unnecessary surgery with the eCura system. Thus, our ML 
model performed better than the eCura system in correctly 
identifying patients who did not require surgery after ESD. 
Characteristics of those 120 patients who could have avoided 
additional surgery by our ML model (i.e., true negatives in 
our ML model) is shown in Supplementary Table S3. The 
scores of the eCura system in those patients were 0 point 
for 49 patients (41%), 1 point for 68 patients (57%), and 2 
points for 3 patients (2%). No patients neither had eCura 
scores of ≥ 3 points, nor lymphatic involvement (Table S3).

Our study had several limitations. First, the section-
ing interval of the resected specimen differed between the 

Fig. 2  Receiver operating characteristic curves for the validation 
cohort (n = 536). AUC  area under the curve

Fig. 3  Permutation feature importance of the seven variables used to 
construct the machine learning model in the training cohort
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ESD (2 mm) and surgery (5 mm) groups. Histopathologi-
cal evaluation of surgically resected specimens carries the 
risk of underestimating the invasion depth and overlooking 
lymphatic and/or vascular involvement because of the wide 
sectioning interval. As a result, the effect of each risk factor 
on LNM may differ between the ESD and surgery groups. 
To minimize this problem, we included “treatment method” 
as an input parameter in the process of training, making the 
ML model learn those differences between the ESD and 
surgery groups. Second, the immunohistochemical staining 
for assessing lymphatic and vascular involvement was not 
performed for all the cases. This might also have caused the 
underestimation of the lymphatic and/or vascular involve-
ment. Third, vertical cancer margin was not evaluable in 
surgically resected specimens. Fourth, the rate of patients 
with LNM-positive EGC in the validation cohort (7%) was 
smaller than that of the training cohort (14%). Fifth, regard-
ing the ESD-alone group, whether a minimum of 3 years 
of follow-up was sufficient remains controversial. However, 
considering that metastatic recurrence often appears within 
3 years after EGC resection [30], we believe our follow-up 
period was acceptable. Sixth, we did not collect information 
on the extent of lymph node dissection or the number of 
resected lymph nodes in patients who underwent surgery, 
which may differ according to preoperative staging. Some 
patients might have undergone insufficient lymph node dis-
section, causing an underestimation of LNM; however, our 
large cohort might have reduced this bias.

In conclusion, we developed an ML model that performed 
better than the eCura system in predicting the risk of LNM 
in patients with EGC who did not meet the Japanese endo-
scopic curability criteria. This precision model is potentially 
useful for minimizing unnecessary surgeries after gastric 
ESD. A prospective study is required to further validate our 
ML model.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10120- 024- 01511-8.
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