28 research outputs found

    Rheological Scaling of Ionic Liquid-Based Polyelectrolytes in the Semidilute Unentangled Regime from Low to High Salt Concentrations

    Get PDF
    Polymerized ionic liquids (PILs) are a special class of ion-containing polymers with ionic liquid structures. The viscoelastic properties of PILs in IL solutions are expected to be influenced by both polymer–polymer interaction and charge screening by IL ions, which becomes complex at high IL concentrations due to strong ionic correlations. In this work, we aim to understand the effect of the ionic correlations on the shear rheology of PIL in IL solutions in the semidilute unentangled (SU) polymer regime, with moderate polymer–polymer interactions. We conducted systematic rheological characterization of a PIL, poly(1-butyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide), in a mixture of an IL, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and a non-ionic solvent, dimethylformamide, to evaluate the specific viscosity ηsp and the longest relaxation time λ with varying IL concentrations cIL, at a fixed polymer concentration. We found that both ηsp and λ initially decreased with the increasing cIL, following the scaling theory of polyelectrolyte solutions in the low salt concentration regime. However, these values exhibited an upturn at high cIL. We explained the observed non-monotonic viscoelastic behavior by proposing a charge screening model for SU solutions, accounting for both modified screening length in concentrated IL solutions and complete charge screening. Our results demonstrate how the strong ionic correlation in concentrated IL solutions modifies the electrostatics of PILs and their corresponding viscoelastic properties in the presence of moderate polymer–polymer interactions

    Uncoupling of DNA Replication and Centrosome Duplication Cycles Is a Primary Cause of Haploid Instability in Mammalian Somatic Cells

    No full text
    Mammalian haploid somatic cells are unstable and prone to diploidize, but the cause of haploid instability remains largely unknown. Previously, we found that mammalian haploid somatic cells suffer chronic centrosome loss stemming from the uncoupling of DNA replication and centrosome duplication cycles. However, the lack of methodology to restore the coupling between DNA replication and centrosome duplication has precluded us from investigating the potential contribution of the haploidy-linked centrosome loss to haploid instability. In this study, we developed an experimental method that allows the re-coupling of DNA and centrosome cycles through the chronic extension of the G1/S phase without compromising cell proliferation using thymidine treatment/release cycles. Chronic extension of G1/S restored normal mitotic centrosome number and mitotic control, substantially improving the stability of the haploid state in HAP1 cells. Stabilization of the haploid state was compromised when cdk2 was inhibited during the extended G1/S, or when early G1 was chronically extended instead of G1/S, showing that the coupling of DNA and centrosome cycles rather than a general extension of the cell cycle is required for haploid stability. Our data indicate the chronic centriole loss arising from the uncoupling of centrosome and DNA cycles as a direct cause of genome instability in haploid somatic cells, and also demonstrate the feasibility of modulation of haploid stability through artificial coordination between DNA and centrosome cycles in mammalian somatic cells

    Rheological Scaling of Ionic Liquid-Based Polyelectrolytes in the Semidilute Unentangled Regime from Low to High Salt Concentrations

    No full text
    Polymerized ionic liquids (PILs) are a special class of ion-containing polymers with ionic liquid structures. The viscoelastic properties of PILs in IL solutions are expected to be influenced by both polymer–polymer interaction and charge screening by IL ions, which becomes complex at high IL concentrations due to strong ionic correlations. In this work, we aim to understand the effect of the ionic correlations on the shear rheology of PIL in IL solutions in the semidilute unentangled (SU) polymer regime, with moderate polymer–polymer interactions. We conducted systematic rheological characterization of a PIL, poly(1-butyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide), in a mixture of an IL, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and a non-ionic solvent, dimethylformamide, to evaluate the specific viscosity ηsp and the longest relaxation time λ with varying IL concentrations cIL, at a fixed polymer concentration. We found that both ηsp and λ initially decreased with the increasing cIL, following the scaling theory of polyelectrolyte solutions in the low salt concentration regime. However, these values exhibited an upturn at high cIL. We explained the observed non-monotonic viscoelastic behavior by proposing a charge screening model for SU solutions, accounting for both modified screening length in concentrated IL solutions and complete charge screening. Our results demonstrate how the strong ionic correlation in concentrated IL solutions modifies the electrostatics of PILs and their corresponding viscoelastic properties in the presence of moderate polymer–polymer interactions

    Cross-Reactivity of Intraoral Allergic Contact Mucositis in the Nickel-Sensitized Ear Model of Metal Allergy

    No full text
    Cross-reactivity of metal allergies can make metal allergy treatment complicated because the background of immune response in cross-reactions remains unknown. In clinical settings, cross-reactivity among several metals has been suspected. However, the precise mechanism of immune response in cross-reactivity is unclear. Two sensitizations with nickel, palladium, and chromium plus lipopolysaccharide solution into the postauricular skin were followed by a single nickel, palladium, and chromium challenge of the oral mucosa to generate the intraoral metal contact allergy mouse model. Results showed that the infiltrating T cells in nickel-sensitized, palladium- or chromium-challenged mice expressed CD8+ cells, cytotoxic granules, and inflammation-related cytokines. Thus, nickel ear sensitization can cause cross-reactive intraoral metal allergy

    Type IVb Hypersensitivity Reaction in the Novel Murine Model of Palladium–Induced Intraoral Allergic Contact Mucositis

    No full text
    Palladium (Pd) is a component of several alloy types that are widely used in our environment, including several dental alloy types that cause adverse reactions such as hypersensitivity in the oral mucosa. However, the pathological mechanism of intraoral Pd allergies remains unclear because its animal model in the oral mucosa has not been established. In this study, we established a novel murine model of Pd–induced allergies in the oral mucosa, and explored the immune response of cytokine profiles and T cell diversity in terms of the T cell receptor. The Pd–induced allergy mouse was generated by two sensitizations with PdCl2, plus a lipopolysaccharide solution into the postauricular skin followed by a single Pd challenge of the buccal mucosa. Significant swelling and pathological features were histologically evident at five days after the challenge, and CD4–positive T cells producing high levels of T helper 2 type cytokines had accumulated in the allergic oral mucosa. Characterization of the T cell receptor repertoire in Palladium allergic mice indicated that Pd–specific T cell populations were limited in V and J genes but were diverse at the clonal level. Our model demonstrated that a Pd–specific T cell population with Th2 type response tendencies may be involved in the Pd–induced intraoral metal contact allergy

    Type IVb Hypersensitivity Reaction in the Novel Murine Model of Palladium–Induced Intraoral Allergic Contact Mucositis

    No full text
    Palladium (Pd) is a component of several alloy types that are widely used in our environment, including several dental alloy types that cause adverse reactions such as hypersensitivity in the oral mucosa. However, the pathological mechanism of intraoral Pd allergies remains unclear because its animal model in the oral mucosa has not been established. In this study, we established a novel murine model of Pd–induced allergies in the oral mucosa, and explored the immune response of cytokine profiles and T cell diversity in terms of the T cell receptor. The Pd–induced allergy mouse was generated by two sensitizations with PdCl2, plus a lipopolysaccharide solution into the postauricular skin followed by a single Pd challenge of the buccal mucosa. Significant swelling and pathological features were histologically evident at five days after the challenge, and CD4–positive T cells producing high levels of T helper 2 type cytokines had accumulated in the allergic oral mucosa. Characterization of the T cell receptor repertoire in Palladium allergic mice indicated that Pd–specific T cell populations were limited in V and J genes but were diverse at the clonal level. Our model demonstrated that a Pd–specific T cell population with Th2 type response tendencies may be involved in the Pd–induced intraoral metal contact allergy

    Characterization of Metal-Specific T-Cells in Inflamed Oral Mucosa in a Novel Murine Model of Chromium-Induced Allergic Contact Dermatitis

    No full text
    The element chromium (Cr) is a component of several types of alloys found in the environment, or utilized in dentistry, that may cause intraoral metal contact allergy. However, the pathological mechanism of intraoral Cr allergy remains unclear because there is no established animal model of Cr allergy in the oral mucosa. In this study, we established a novel murine model of Cr-induced intraoral metal contact allergy and elucidated the immune response in terms of cytokine profiles and T-cell receptor repertoire. Two sensitizations with Cr plus lipopolysaccharide solution into the postauricular skin were followed by a single Cr challenge of the oral mucosa to generate the intraoral metal contact allergy model. Histological examination revealed that CD3+ T-cells had infiltrated the allergic oral mucosa one day after exposure to the allergen. The increase in T-cell markers and cytokines in allergic oral mucosa was also confirmed via quantitative PCR analysis. We detected Cr-specific T-cells bearing TRAV12D-1-TRAJ22 and natural killer (NK) T-cells in the oral mucosa and lymph nodes. Our model demonstrated that Cr-specific T-cells and potent NKT-cell activation may be involved in the immune responses of Cr-induced intraoral metal contact allergy
    corecore