260 research outputs found

    Lower-depth programmable linear optical processors

    Full text link
    Programmable linear optical processors (LOPs) can have widespread applications in computing and information processing due to their capabilities to implement reconfigurable on-chip linear transformations. A conventional LOP that uses a mesh of Mach-Zehnder interferometers (MZIs) requires 2N+32N+3 stages of phase shifters for N×NN \times N matrices. However, it is beneficial to reduce the number of phase shifter stages to realize a more compact and lower-loss LOP, especially when long and lossy electro-optic phase shifters are used. In this work, we propose a novel structure for LOPs that can implement arbitrary matrices as long as they can be realized by previous MZI-based schemes. Through numerical analysis, we further show that the number of phase shifter stages in the proposed structure can be reduced to N+2N+2 and N+3N+3 for a large number of random dense matrices and sparse matrices, respectively. This work contributes to the realization of compact, low-loss, and energy-efficient programmable LOPs

    Photoinduced change in the shape of azobenzene-based molecular glass particles fixed in agar gel

    Get PDF
    Photomechanical behaviours of photochromic materials have been attracting a great deal of attention. Here we report a new photomechanical phenomenon, one in which azobenzene-based molecular glass particles fixed in an isotropic agar gel environment became elongated and formed string-like structures upon being irradiated with a linearly polarized laser beam. An analysis in three dimensions confirmed the direction of the elongation to be parallel to the polarization direction of the incident beam. The phenomenon could be explained by a photoinduced vibration and/or transport of the molecules parallel to the polarization direction of the incident beam to generate a force exerted by the particles to push the surrounding gel away in the direction parallel to the polarization direction. Photoinduced elongation was promoted by a high Tg for the material but impeded by the introduction of bulky substituents at both ends of the azobenzene moiety. Such elongation could also be induced by using linearly polarized incoherent LED light, suggesting that the coherence of the incident beam was irrelevant to the photomechanical behaviours

    Efficacy of FimA antibody and clindamycin in silkworm larvae stimulated with Porphyromonas gulae

    Get PDF
    Objective: Porphyromonas gulae, a major periodontal pathogen in animals, possesses fimbriae that have been classified into three genotypes (A, B, C) based on the diversity of fimA genes encoding fimbrillin protein (FimA). P. gulae strains with type C fimbriae were previously shown to be more virulent than other types. In this study, we further examined the host toxicity mediated by P. gulae fimbriae by constructing recombinant FimA (rFimA) expression vectors for each genotype and raised antibodies to the purified proteins. Methods and Results: All larvae died within 204 h following infection with P. gulae type C at the low-dose infection, whereas type A and B did not. Among fimA types, the survival rates of the larvae injected with rFimA type C were remarkably decreased, while the survival rates of the larvae injected with rFimA type A and type B were greater than 50%. Clindamycin treatment inhibited the growth of type C strains in a dose-dependent manner, resulting in an increased rate of silkworm survival. Finally, type C rFimA-speci?c antiserum prolonged the survival of silkworm larvae stimulated by infection with P. gulae type C strain or injection of rFimA type C protein. Conclusion: These results suggested that type C fimbriae have high potential for enhancement of bacterial pathogenesis, and that both clindamycin and anti-type C rFimA-specific antibodies are potent inhibitors of type C fimbriae-induced toxicity. This is the first report to establish a silkworm infection model using P. gulae for toxicity assessment

    Characterization of the unique oral microbiome of children harboring Helicobacter pylori in the oral cavity

    Get PDF
    Ogaya Y., Kadota T., Hamada M., et al. Characterization of the unique oral microbiome of children harboring Helicobacter pylori in the oral cavity. Journal of Oral Microbiology 16, 2339158 (2024); https://doi.org/10.1080/20002297.2024.2339158.Objective: Helicobacter pylori infection is acquired in childhood via the oral cavity, although its relationship with the characteristics of the oral microbiome has not been elucidated. In this study, we performed comprehensive analysis of the oral microbiome in children and adults with or without H. pylori in the oral cavity. Methods: Bacterial DNA was extracted from 41 adult and 21 child saliva specimens, and H. pylori was detected using PCR. 16S rRNA gene amplification was performed for next-generation sequencing. Bioinformatic analyses were conducted using Quantitative Insights into Microbial Ecology 2 (QIIME 2). Results: Faith’s phylogenetic diversity analysis showed a significant difference between H. pylori-negative adult and child specimens in terms of α-diversity (p < 0.05), while no significant difference was observed between H. pylori-positive adult and child specimens. There was also a significant difference in β-diversity between H. pylori-positive and negative child specimens (p < 0.05). Taxonomic analysis at the genus level revealed that Porphyromonas was the only bacterium that was significantly more abundant in both H. pylori-positive adults and children than in corresponding negative specimens (p < 0.01 and p < 0.05, respectively). Conclusion: These results suggest unique oral microbiome characteristics in children with H. pylori infection in the oral cavity

    Photomechanical response observed for azobenzene-based photochromic amorphous molecular films fabricated on the surface of agar gel

    Get PDF
    As a novel photomechanical behavior, structural changes of azobenzene-based photochromic amorphous molecular films fabricated on the surface of soft materials such as agar gel were found upon irradiation with linearly polarized laser beam. The present photomechanical behavior included two-stage processes, striped pattern formation in the direction perpendicular to the polarization direction of the incident beam and subsequent band-like structure formation aligned in the direction parallel to the polarization direction. Both glass-transition temperature of the photochromic materials and the viscosity of the underlying layers were suggested to be important factors for exhibiting the present photomechanical behavior

    Factors associated with the modulation of pain by visual distortion of body size

    Get PDF
    Modulation of pain using visual distortion of body size (VDBS) has been the subject of various reports. However, the mechanism underlying the effect of VDBS on pain has been less often studied. In the present study, factors associated with modulation of pain threshold by VDBS were investigated. Visual feedback in the form of a magnified image of the hand was provided to 44 healthy adults to examine changes in pain. In participants with a higher pain threshold when visual feedback of a magnified image of the hand was provided, the two-point discrimination threshold decreased. In contrast, participants with a lower pain threshold with visual feedback of a magnified image of the hand experienced unpleasant emotions toward the magnified image of the hand. Interestingly, this emotional reaction was strongly associated with negative body consciousness in several subjects. These data suggested an analgesic effect of visual feedback in the form of a magnified image of the hand is only when tactile perception is vivid and the emotional reaction toward the magnified image is moderate. The results also suggested that negative body consciousness is important for the modulation of pain using VDBS

    Roles of Porphyromonas gulae proteases in bacterial and host cell biology

    Get PDF
    Porphyromonas gulae, an animal-derived periodontal pathogen, expresses several virulence factors, including fimbria, lipopolysaccharide (LPS) and proteases. We previously reported that its invasive efficiency was dependent on fimbriae types. In addition, P. gulae LPS increased inflammatory responses via toll-like receptors. The present study was conducted to investigate the involvement of P. gulae proteases in bacterial and host cell biology. Porphyromonas gulae strains showed an ability to agglutinate mouse erythrocytes and also demonstrated co-aggregation with Actinomyces viscosus, while the protease inhibitors antipain, PMSF, TLCK and leupeptin diminished P. gulae proteolytic activity, resulting in inhibition of haemagglutination and co-aggregation with A. viscosus. In addition, specific proteinase inhibitors were found to reduce bacterial cell growth. Porphyromonas gulae inhibited Ca9-22 cell proliferation in a multiplicity of infection- and time-dependent manner. Additionally, P. gulae-induced decreases in cell contact and adhesion-related proteins were accompanied by a marked change in cell morphology from well spread to rounded. In contrast, inhibition of protease activity prevented degradation of proteins, such as E-cadherin, beta-catenin and focal adhesion kinase, and also blocked inhibition of cell proliferation. Together, these results indicate suppression of the amount of human proteins, such as gamma-globulin, fibrinogen and fibronectin, by P. gulae proteases, suggesting that a novel protease complex contributes to bacterial virulence

    Cnm of Streptococcus mutans is important for cell surface structure and membrane permeability

    Get PDF
    Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is a major pathogen of dental caries. The protein Cnm of S. mutans is involved in collagen binding, but its other biological functions are unknown. In this study, a Cnm-deficient isogenic mutant and a complementation strain were generated from a Cnm-positive S. mutans strain to help determine the properties of Cnm. Initially, comparison of the cell surface structure was performed by electron microscopy, which demonstrated that Cnm appears to be localized on the cell surface and associated with a protruding cell surface structure. Deep RNA sequencing of the strains revealed that the defect in Cnm caused upregulated expression of many genes related to ABC transporters and cell-surface proteins, while a few genes were downregulated. The amount of biofilm formed by the Cnm-defective strain increased compared with the parental and complemented strains, but the biofilm structure was thinner because of elevated expression of genes encoding glucan synthesis enzymes, leading to increased production of extracellular polysaccharides. Particular antibiotics, including bacitracin and chloramphenicol, had a lower minimum inhibitory concentration for the Cnm-defective strain than particular antibiotics, including bacitracin and chloramphenicol, compared with the parental and complemented strains. Our results suggest that S. mutans Cnm is located on the cell surface, gives rise to the observed protruding cell surface, and is associated with several biological properties related to membrane permeability
    corecore