39 research outputs found

    Contribution of muscle stiffness of the triceps surae to passive ankle joint stiffness in young and older adults

    Get PDF
    This study aimed to investigate whether triceps surae muscle stiffness is associated with passive ankle joint stiffness in 40 young (21–24 years) and older (62–83 years) males. Using ultrasound shear wave elastography, the shear modulus of each muscle of the triceps surae (the medial [MG], lateral gastrocnemius [LG], and soleus [Sol]) was assessed as muscle stiffness at the ankle neutral position (NP) and 15-degree dorsiflexed position (DF15) with the knee fully extended. Passive ankle joint stiffness at the NP and DF15 was calculated as the gradient of the angle–torque relationship at each joint angle during passive ankle dorsiflexion at 1°∙s−1 controlled by using an isokinetic dynamometer. Passive ankle joint stiffness was normalized by the body mass. There was no correlation between the absolute ankle joint stiffness and muscle shear modulus of triceps surae in the young and older groups at the NP (r ≤ 0.349, p ≥ 0.138). Significant positive correlations between absolute ankle joint stiffness and muscle shear modulus at DF15 were observed for MG and Sol in the young group (r ≥ 0.451, p ≤ 0.044) but not in the older group. The normalized ankle joint stiffness at the NP was significantly positively correlated with the LG shear modulus in young participants and with the MG and LG shear modulus in older participants (r ≥ 0.466 and p ≤ 0.039). There were significant positive correlations between the normalized ankle joint stiffness and the muscle shear modulus of the triceps surae at DF15 in young and older participants (r ≥ 0.464 and p ≤ 0.040), except for the MG shear modulus in older participants (r = 0.419 and p = 0.066). These results suggest that the material properties of the entire triceps surae, even Sol, which is the most compliant muscle among the triceps surae, affect passive ankle joint stiffness, especially when the triceps surae is lengthened and body size is considered

    Muscle Shear Moduli Changes and Frequency of Alternate Muscle Activity of Plantar Flexor Synergists Induced by Prolonged Low-Level Contraction

    Get PDF
    During prolonged low-level contractions, synergist muscles are activated in an alternating pattern of activity and silence called as alternate muscle activity. Resting muscle stiffness is considered to increase due to muscle fatigue. Thus, we investigated whether the difference in the extent of fatigue of each plantar flexor synergist corresponded to the difference in the frequency of alternate muscle activity between the synergists using muscle shear modulus as an index of muscle stiffness. Nineteen young men voluntarily participated in this study. The shear moduli of the resting medial and lateral gastrocnemius muscles (MG and LG) and soleus muscle (SOL) were measured using shear wave ultrasound elastography before and after a 1-h sustained contraction at 10% peak torque during maximal voluntary contraction of isometric plantar flexion. One subject did not accomplish the task and the alternate muscle activity for MG was not found in 2 subjects; therefore, data for 16 subjects were used for further analyses. The magnitude of muscle activation during the fatiguing task was similar in MG and SOL. The percent change in shear modulus before and after the fatiguing task (MG: 16.7 ± 12.0%, SOL: −4.1 ± 13.9%; mean ± standard deviation) and the alternate muscle activity during the fatiguing task (MG: 33 [20–51] times, SOL: 30 [17–36] times; median [25th–75th percentile]) were significantly higher in MG than in SOL. The contraction-induced change in shear modulus (7.4 ± 20.3%) and the alternate muscle activity (37 [20–45] times) of LG with the lowest magnitude of muscle activation during the fatiguing task among the plantar flexors were not significantly different from those of the other muscles. These results suggest that the degree of increase in muscle shear modulus induced by prolonged contraction corresponds to the frequency of alternate muscle activity between MG and SOL during prolonged contraction. Thus, it is likely that, compared with SOL, the alternate muscle activity of MG occurs more frequently during prolonged contraction due to the greater increase in fatigue of MG induced by the progression of a fatiguing task

    Relation of leg phase angle from bioelectrical impedance analysis with voluntary and evoked contractile properties of the plantar flexors

    Get PDF
    Introduction: Bioelectrical impedance analysis (BIA) can noninvasively and quickly assess electrical properties of the body, such as the phase angle. Phase angle is regarded as the quantity and/or quality of skeletal muscle and is associated with exercise performance, such as jump height and walking speed. Although the phase angle derived from BIA is assumed to be a useful way to assess muscle function, the relationship between the phase angle and neuromuscular properties has not been fully investigated. The purpose of this study was to investigate the association of phase angle with voluntary and evoked contractile properties in 60 adults (age, 21–83 years; 30 females and 30 males).Methods: The phase angle of the right leg at 50 kHz was evaluated using BIA. The twitch contractile properties (peak twitch torque [PTtwitch], rate of twitch torque development [RTDtwitch], and time-to-PTtwitch [TPTtwitch]) of the plantar flexors were measured using tibial nerve electrical stimulation. Maximal voluntary isometric contractions (MVICs) were performed to measure the maximal muscle strength and explosive muscle strength, from which the peak MVIC torque (PTMVIC) and rate of torque development (RTD) over a time interval of 0–200 ms were assessed, respectively. The root mean square (RMS) values of electromyographic (EMG) activity during the PTMVIC and RTD measurements (EMG-RMSMVIC and EMG-RMSRTD, respectively) were calculated. The RTD and EMG-RMSRTD were normalized using PTMVIC and EMG-RMSMVIC, respectively.Results and discussion: Phase angle significantly correlated with twitch contractile properties (|r| ≥ 0.444, p < 0.001), PTMVIC (r = 0.532, p < 0.001), and RTD (r = 0.514, p < 0.001), but not with normalized RTD (r = 0.242, p = 0.065) or normalized EMG-RMSRTD (r = −0.055, p = 0.676). When comparing measurement variables between the low- and high-phase angle groups while controlling for sex and age effects, the high-phase angle group showed greater PTtwitch, RTDtwitch, PTMVIC, and RTD (p < 0.001) and shorter TPTtwitch (p < 0.001) but not normalized RTD (p = 0.184) or normalized EMG-RMSRTD (p = 0.317). These results suggest that the leg phase angle can be an indicator of voluntary and evoked muscle contractile properties but not the neuromuscular activity of the plantar flexors, irrespective of sex and age

    Muscle length influence on rectus femoris damage and protective effect in knee extensor eccentric exercise

    Get PDF
    © 2020 The Authors. Scandinavian Journal of Medicine & Science In Sports published by John Wiley & Sons Ltd This study tested the hypothesis that the magnitude of rectus femoris (RF) damage and the repeated bout effect (RBE) would be greater after knee extensor eccentric exercise performed in a supine (long RF lengths) than a sitting (short RF lengths) position, and the muscle length effects would be more prominent at the proximal than distal RF. Young untrained men were placed to one of the two groups (n = 14 per group). S group performed the knee extensor eccentric exercise in the sitting position for the first bout and the supine position for the second bout, and L group performed the exercise in the supine position for two bouts, with 4 weeks between bouts. Dependent variables included evoked and maximal voluntary isometric contraction (MVC) torque, electromyography (EMG) during MVC, muscle soreness, and shear modulus, which were measured before and 1-3 days after each exercise bout. After the first bout, L group in comparison with S group showed greater (P \u3c .05) changes in hip flexor MVC torque (average of 1-3 days post-exercise: −11.1 ± 9.4% vs −5.0 ± 7.5%), proximal RF EMG (−22.4 ± 16% vs −9.0 ± 21.9%), and proximal RF shear modulus (33.2 ± 22.8% vs 16.9 ± 13.5%). No significant differences between groups were evident for any of other variables after the first bout including knee extensor MVC torque, and for the changes in all variables after the second bout. These results supported the hypothesis that RF damage would be greater for the spine than sitting position especially at the proximal region, but did not support the hypothesis about the RBE

    Muscle damage indicated by maximal voluntary contraction strength changes from immediately to 1 day after eccentric exercise of the knee extensors

    Get PDF
    The present study examined if the magnitude of changes in indirect muscle damage markers could be predicted by maximal voluntary isometric contraction (MVIC) torque changes from immediately to 1 day after eccentric exercise. Twenty-eight young men performed 100 maximal isokinetic (60°/s) eccentric contractions of the knee extensors. MVIC torque, potentiated doublet torque, voluntary activation (VA) during MVIC, shear modulus of rectus femoris (RF), vastus medialis and lateralis, and muscle soreness of these muscles were measured before, immediately after, and 1–3 days post-exercise. Based on the recovery rate of the MVIC torque from immediately to 1-day post-exercise, the participants were placed to a recovery group that showed an increase in the MVIC torque (11.3–79.9%, n = 15) or a no-recovery group that showed no recovery (−71.9 to 0%, n = 13). No significant difference in MVIC torque decrease immediately post-exercise was found between the recovery (−33 ± 12%) and no-recovery (−32 ± 9%) groups. At 1–3 days, changes in MVIC torque (−40 to −26% vs. −22 to −12%), potentiated doublet torque (−37 to −22% vs. −20 to −9%), and proximal RF shear modulus (29–34% vs. 8–15%) were greater (p \u3c 0.05) for the no-recovery than recovery group. No significant group differences were found for muscle soreness. The recovery rate of MVIC torque was correlated (p \u3c 0.05) with the change in MVIC torque from baseline to 2 (r = 0.624) or 3 days post-exercise (r = 0.526), or peak change in potentiated doublet torque at 1–3 days post-exercise from baseline (r = 0.691), but not correlated with the changes in other dependent variables. These results suggest that the recovery rate of MVIC torque predicts changes in neuromuscular function but not muscle soreness and stiffness following eccentric exercise of the knee extensors

    Effects of sex and joint action on voluntary activation

    Get PDF
    The current study tested the hypothesis that voluntary activation during maximal voluntary contraction (MVC) conditionally depends on sex and joint action. Twenty-eight healthy adults (14 of each sex) performed knee extensor MVC and plantar flexor MVC at extended and flexed knee positions. Voluntary activation during MVC was assessed using a twitch interpolation technique. The voluntary activation during plantar flexor MVC at the extended knee position was significantly lower (P = 0.020, 95% confidence interval 1.4 to 14.6, Cohen’s d for between-subject design = 0.94) in women (88.3% ± 10.0%) than in men (96.2% ± 6.6%). In contrast, no significant sex differences were shown in the voluntary activation during knee extensor MVC (93.7% ± 5.9% (women) vs. 95.0%  ± 3.9% (men)) and during plantar flexor MVC at the flexed knee position (90.4% ± 12.2% (women) vs. 96.8% ± 5.6% (men)). The voluntary activation during knee extensor MVC was significantly higher (P = 0.001, 95% confidence interval 2.1 to 8.8, Cohen’s d for within-subject design = 0.69) than that during plantar flexor MVC at the extended knee position in women, whereas the corresponding difference was not observed in men. The results revealed that the existence of sex difference in the voluntary activation during MVC depends on joint action and joint angle

    Bone microarchitectural analysis using ultra-high-resolution CT in tiger vertebra and human tibia

    Get PDF
    Background To reveal trends in bone microarchitectural parameters with increasing spatial resolution on ultra-high-resolution computed tomography (UHRCT) in vivo and to compare its performance with that of conventional-resolution CT (CRCT) and micro-CT ex vivo. Methods We retrospectively assessed 5 tiger vertebrae ex vivo and 16 human tibiae in vivo. Seven-pattern and four-pattern resolution imaging were performed on tiger vertebra using CRCT, UHRCT, and micro-CT, and on human tibiae using UHRCT. We measured six microarchitectural parameters: volumetric bone mineral density (vBMD), trabecular bone volume fraction (bone volume/total volume, BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), and connectivity density (ConnD). Comparisons between different imaging resolutions were performed using Tukey or Dunnett T3 test. Results The vBMD, BV/TV, Tb.N, and ConnD parameters showed an increasing trend, while Tb.Sp showed a decreasing trend both ex vivo and in vivo. Ex vivo, UHRCT at the two highest resolutions (1024- and 2048-matrix imaging with 0.25-mm slice thickness) and CRCT showed significant differences (p <= 0.047) in vBMD (51.4 mg/cm(3) and 63.5 mg/cm(3)versus 20.8 mg/cm(3)), BV/TV (26.5% and 29.5% versus 13.8 %), Tb.N (1.3 l/mm and 1.48 l/mm versus 0.47 l/mm), and ConnD (0.52 l/mm(3) and 0.74 l/mm(3)versus 0.02 l/mm(3), respectively). In vivo, the 512- and 1024-matrix imaging with 0.25-mm slice thickness showed significant differences in Tb.N (0.38 l/mm versus 0.67 l/mm, respectively) and ConnD (0.06 l/mm(3)versus 0.22 l/mm(3), respectively). Conclusions We observed characteristic trends in microarchitectural parameters and demonstrated the potential utility of applying UHRCT for microarchitectural analysis

    Does the combination of different pitches and the absence of pitch type information influence timing control during batting in baseball?

    No full text
    Baseball pitchers use various pitch types to reduce hitting accuracy, but little is understood of the practical strategy of using visuomotor skills and timing control to respond to different pitches. This study examined 1) effectiveness of pitch type combinations, and 2) relationship between the presence and absence of advance information about the next pitch and the timing error. Twenty-six high school baseball players hit a ball launched from a pitching machine in a combination of fastballs (34.3±1.3 m·s-1), curveballs (25.4±1.0 m·s-1), and slowballs (25.5±0.9 m·s-1). Each participant performed three conditions. (1) Continuity condition (15 trials), in which the same pitch type was thrown five times consecutively. (2) Random condition (30 trials), in which pitch type was not preliminarily conveyed to the participants. (3) Open condition (20 trials), in which the next pitch type was preliminarily conveyed to participants. Participants' hitting movement was recorded by an optical motion capture system and force platform. We calculated timing error based on the difference between the measured impact location (ball position relative to the batter's body at ball-bat impact) and optimal impact location. The timing error between n-th pitch type, (n-1)-th pitch, and the presence or absence of advance information about pitch type (open vs random condition) were analyzed using three-way repeated ANOVA. The results showed that the (n-1)-th pitch type did not affect the timing of impact (p = 0.338). In contrast, the timing errors in open conditions were fewer compared to random conditions (p < 0.001). These results indicate that the pitch type sequence has insignificant effects, and advance information about pitches affects the timing errors. Therefore, having two or more pitch types, reducing the fluctuation of the pitching motion, and the early trajectory of the ball between different pitches potentially lead to increase timing errors

    Study on detectability of signals by utilizing differences in their amplitude modulation

    Get PDF
    Auditory search experiments were conducted to investigate the detectability of targets with regard to movements in temporal envelopes. The movements in the temporal envelopes of signals were defined as the mean value of slopes, i.e., the first order approximation of the temporal envelopes. The movements were systematically controlled by band-pass filtering on the modulation spectrum of the signals. The movements that we used in the experiments were 44, 154, 264, 374, 484, 594, and 704 mV/s. The movements of target signals were set at 264, 374, 484 mV/s. The movements of background signals in each target were set to be different from the movements between target and background signals. Stimuli were composed of different temporal envelopes with a noise carrier. 1/2-octave band-noise as a carrier was used in which the center frequency of the carrier was 1380 Hz. The results obtained from auditory search experiments demonstrated that the detectability of each target signal could be improved when the movements of the target and background signals differed. The results revealed that the difference in the movements of the temporal envelopes of signals affected the detectability of the signals
    corecore