9 research outputs found
Monitoring ground deformation of eruption center by ground-based interferometric synthetic aperture radar (GB-InSAR): a case study during the 2015 phreatic eruption of Hakone volcano
Abstract We successfully monitored the ground deformation of an eruption center during the 2015 phreatic eruption of Hakone volcano, Japan, using ground-based interferometric synthetic aperture radar (GB-InSAR). GB-InSAR has been developed and applied over the past two decades and enables the frequent (< 10 min) aerial monitoring of surficial deformation of structures and slopes. We installed a GB-InSAR 4 days before the eruption of Hakone volcano on June 29, 2015, and monitored the ground deformation of an area where uplift was detected by a satellite InSAR. The ground deformation observed by the GB-InSAR began suddenly on the morning of June 29 almost coincident with the intrusion of hydrothermal fluid that was inferred by other geophysical observations. The hydrothermal crack is considered to have caused the eruption, which was known by an ash fall 5 h later. The GB-InSAR results indicated a significant uplifted area which is approximately 100 m in diameter, and new craters and fumaroles were created by the eruption in and around the area. The displacement reached up to a total of 45 mm until the evening of June 29 and continued at least until the morning of July 1. During our observation, the displacement rate decreased twice, and the timing of each decrease seemed to correspond to the formation of new conduits as implied from geophysical observations
InSAR analysis for detecting the route of hydrothermal fluid to the surface during the 2015 phreatic eruption of Hakone Volcano, Japan
Abstract Although the 2015 Hakone Volcano eruption was a small-scale phreatic eruption with a discharged mass of only about 100 tons, interferometric synthetic aperture radar successfully detected surface deformations related to the eruption. Inversion model of the underground hydrothermal system based on measured ground displacements by ALOS-2/PALSAR-2 images showed that a crack opened at an elevation of about 530–830 m, probably at the time of the eruption. A geomorphological analysis detected several old NW–SE trending fissures, and the open crack was located just beneath one of the fissures. Thus, the crack that opened during the 2015 eruption could have been a preexisting crack that formed during a more voluminous hydrothermal eruption. In addition, the inversion model implies that a sill deflation occurred at an elevation of about 225 m, probably at the time of the eruption. The deflation of sill-like body represents a preexisting hydrothermal reservoir at an elevation of 100–400 m, which intruded fluid in the open crack prior to eruption. The volume changes of the open crack and the sill were calculated to be 1.14 × 105 m3 (inflation) and 0.49 × 105 m3 (deflation), respectively. A very local swelling (about 200 m in diameter) was also detected at the eruption center 2 months before the eruption. The local swelling, whose rate in satellite line-of-sight was 0.7–0.9 cm/day during May 2015 and declined in June, had been monitored until the time of the eruption, when its uplift halted. This was modeled as a point pressure source at an elevation of about 900 m (at a depth of about 80–90 m from the ground surface) and is considered to be a minor hydrothermal reservoir just beneath the fumarolic field. Our analysis shows that the northernmost tip of the open crack reached within 200 m of the surface. Thus, it is reasonable to assume that the hydrothermal fluid in the open crack found a way to the surface and formed the eruption.Graphical abstractXXX
Temporal changes in inflation sources during the 2015 unrest and eruption of Hakone volcano, Japan
Abstract Global navigation satellite system data from Hakone volcano, central Japan, together with GEONET data from the Geospatial Information Authority of Japan, were used to investigate the processes associated with the volcanic activity in 2015, which culminated in a small phreatic eruption in late June 2015. Three deep and shallow sources, namely spherical, open crack, and sill, were employed to elucidate the volcanic processes using the observed GNSS displacements, and the MaGCAP-V software was used to estimate the volumetric changes of these sources. Our detailed analysis shows that a deep inflation source at 6.5 km below sea level started to inflate in late March 2015 at a rate of ~ 9.3 × 104 m3/day until mid-June. The inflation rate then slowed to ~ 2.1 × 104 m3/day and ceased at the end of August 2015. A shallow open crack at 0.8 km above sea level started to inflate in May 2015 at a rate of 1.7 × 103 m3/day. There was no significant volumetric change in the shallow sill source during the volcanic unrest, which is evident from interferometric synthetic aperture radar analysis. The inflation of the deep source continued even after the eruption without a significant slowdown in inflation rate. The inflation stopped in August 2015, approximately 1 month after the eruption ceased. This observation implies that the transportation of magmatic fluid to a deep inflation source (6.5 km) triggered the 2015 unrest. The magmatic fluid may have then migrated from the deep source to the shallow open crack. The phreatic eruption was then caused by the formation of a crack that extended to the surface. However, steam emissions from the vent area during and after the eruption were apparently insufficient to mitigate the internal pressure of the shallow open crack
MOESM2 of Analyzing the continuous volcanic tremors detected during the 2015 phreatic eruption of the Hakone volcano
Additional file 2. Temporal changes in amplitude ratios during volcanic tremor. This file shows the temporal changes in the amplitude ratios among the stations near the vents
Recent Crustal Movement Inferred from GPS Observation of Mt. Tateyama, Northern Alps, Central Japan
We have performed GPS campaign observations at Jododaira, Tateyama Mountains, Northern Alps, central Japan, since 1996. From the result of 10 years of observations, we detected remarkable crustal movement around the Tateyama Mountains. Jododaira station has moved toward WSW at 4.2±0.4mm/yr and uplifted at 3.8±0.6mm/yr during the period form 1996 to 2004, with respect to the GEONET Toyama station that is assumed as fixed. The acceleration of horizontal movement at Jododaira station started from 2000-2001. A possible reason of the acceleration is the effect of slow slip event on the Tokai subduction zone, which started from 2000