35 research outputs found
Goishi tea consumption inhibits airway hyperresponsiveness in BALB/c mice
<p>Abstract</p> <p>Background</p> <p>Airway hyperresponsiveness (AHR) is one of the important traits that characterize bronchial asthma. Goishi tea is a post-heating fermented tea that has been reported to have higher free radical scavenging activity. In this study, we evaluated the prophylactic effects of Goishi tea on AHR in BALB/c mice.</p> <p>Results</p> <p>The number of inflammatory cells in BAL fluid was considerably reduced in Goishi tea/<it>Der f </it>and Gallic acid/<it>Der f </it>groups as compared with Tap water/<it>Der f </it>group. Regarding inflammatory cells in BAL, a significant reduction of eosinophils and neutrophils was observed in Goishi tea-treated mice (p < 0.01), as well as in the Gallic acid/<it>Der f </it>group (p < 0.05), as compared with Tap water/<it>Der f </it>group. In asthmatic mice (Tap water/<it>Der f </it>group), the intensity of airway resistance increased simultaneously with the increase in acetylcholine concentration in a dose-dependant way. AHR was significantly inhibited in Goishi tea/<it>Der f </it>and Gallic acid/<it>Der f </it>(p < 0.01) groups as compared with the Tap water/<it>Der f </it>group. Regarding serum specific-IgG<sub>1</sub>, significantly lower levels of this antibody were observed in Goishi tea/<it>Der f </it>and Gallic acid/<it>Der f </it>groups as compared with the Tap water/<it>Der f </it>group (p < 0.05). In addition, adiponectin level was significantly higher in the Goishi tea group as compared with the Tap water treated mice (p < 0.01).</p> <p>Conclusions</p> <p>The results suggest that Goishi tea consumption exerted an inhibitory effect on eosinophilic and neutrophilic infiltration in the lung, attenuated the increase in airway resistance and increased the production of adiponectin; thus reducing Der f induced allergic inflammatory process in mice.</p
Global Norms, Local Activism, and Social Movement Outcomes: Global Human Rights and Resident Koreans in Japan
The authors integrate social movement outcomes research and the world society approach to build a theoretical model to examine the impact of global and local factors on movement outcomes. Challenging the current research on policy change, which rarely examines the effects of global norms and local activism in one analysis, they argue (1) that global regimes empower and embolden local social movements and increase pressure on target governments from below, and (2) that local activists appeal to international forums with help from international activists to pressure the governments from above. When the pressures from the top and the bottom converge, social movements are more likely to succeed. Furthermore, these pressures are stronger in countries integrated into global society and on issues with strong global norms. The empirical analysis of social movements by resident Koreans in Japan advocating for four types of human rights—civil, political, social/economic, and cultural—demonstrates that the movements produced more successes as Japan\u27s involvement in the international human rights regime expanded since the late 1970s, and that activism on issues with strong global norms achieved greater successes. The analysis also shows that lack of cohesive domestic activism can undercut the chances of social movements\u27 success even with strong global norms on the issue
Creation and application of 250 m square grid meteorological information for crop management using a local weather station network
A method to estimate meteorological factors on a 250 m square grid using real-time data from a local weather station network was developed. The method had better precision than an existing one. The 250 m square grid meteorological information was created to cover Memuro City, Hokkaido. The informa - tion was used with a wheat developmental model to predict the distribution of wheat maturity days in the city, which had 6, 170 ha of wheat fields and 50 combine harvesters, to support decisions for the best management of the harvesters to avoid damage by preharvest sprouting
Electrochemical Characteristics of Micrometer-sized Sn and Acetylene Black Composites Prepared by Mechanical Milling for Sodium-ion Battery Anodes
Five types of micrometer-sized Sn and acetylene black (AB) composite powders were prepared by mechanical milling for 1, 3, 6, 12, and 24 h. The Sn/AB powders obtained, in addition to Sn-only powders were added to a binder and conductive material, and then dried under vacuum to prepare negative electrodes (anodes) for sodium-ion batteries (SIBs). SIBs were fabricated with the anodes in the form of 2032-type coin cells, and were evaluated using charge-discharge tests up to 50 cycles within the cutoff voltage range of 0.005–0.65 V at a constant current of 50 mA g−1 at 25 °C. Maximum discharge capacities of 614 to 651 mAh g−1 were obtained with all the anodes prepared with both the Sn-only and the Sn/AB composites. However, the discharge capacities of the Sn-only and Sn/AB composites milled for 1 and 3 h were significantly decreased as the charge-discharge cycle increased. In contrast, the Sn/AB composites milled for 6 h or more exhibited improved cycle characteristics; capacities of 635, 619, and 584 mAh g−1 were maintained during 50 cycles of testing with the Sn/AB_6h, Sn/AB_12h, and Sn/AB_24h samples, respectively, which were significantly higher than the anode prepared with the Sn-only powder (135 mAh g−1)
北海道農業研究センターにおける1966年からの気象観測について
The National Agricultural Research Center for Hokkaido Region (NARCH) has been recording meteorological data since 1966(Miyata, 1922). The meteorological data are available on NARCH's web site. In this report, the methods used to obtain the data are explained. The meteorological data recorded at NARCH are different from data recorded at more urban observatories because the NARCH data are almost free of urbanization effects (Sameshima et al., 2007). Temperature data recorded at NARCH are therefore typical data for agricultural areas without urbanization effects. Although the NARCH observatory is surrounded by buildings (Fig. 1), NARCH's huge grounds (823 ha) are mostly covered by vegetation (experimental fields and forest), which insulates the observatory from urbanization effects