116 research outputs found

    Topological defect launches 3D mound in the active nematic sheet of neural progenitors

    Full text link
    Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and macroscopic patterns resulting from cell-to-cell interactions remain largely qualitative, even though they are the simplest features observed in everyday experiments. Here we report that neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system, rapidly glide and stochastically reverse its velocity while locally aligning with neighboring cells, thus showing features of an active nematic system. Within the two-dimensional nematic pattern, we find interspaced topological defects with +1/2 and -1/2 charges. Remarkably, we identified rapid cell accumulation leading to three-dimensional mounds at the +1/2 topological defects. Single-cell level imaging around the defects allowed quantification of the evolving cell density, clarifying that not only cells concentrate at +1/2 defects, but also escape from -1/2 defects. We propose the mechanism of instability around the defects as the interplay between the anisotropic friction and the active force field, thus addressing a novel universal mechanism for local cell density control.Comment: 4 pages, 4 figures + Supplementary Information (4 pages, 9 figures

    Practical Lessons from Theoretical Models about the Somitogenesis

    Get PDF
    Vertebrae and other mammalian repetitive structures are formed from embryonic organs called somites. Somites arise sequentially from the unsegmented presomitic mesoderm (PSM). In mice, a new bilateral pair of somites arise every two hours from the rostral PSM. On the other hand, cells are added to the caudal side of the PSM due to cell proliferation of the tail bud. Somite formation correlates with cycles of cell-autonomous expression in the PSM of genes like Hes7. Because the somitogenesis is a highly dynamic and coordinated process, this event has been subjected to extensive theoretical modeling. Here, we describe the current understanding about the somitogenesis in mouse embryos with an emphasis on insights gained from computer simulations. It is worth noting that the combination of experiments and computer simulations has uncovered dynamical properties of the somitogenesis clock such as the transcription/translation delays, the half-life and the synchronization mechanism across the PSM. Theoretical models have also been useful to provide predictions and rigorous hypothesis about poorly understood processes such as the mechanisms by which the temporal PSM oscillations are arrested and converted into an spatial pattern. We aim at reviewing this theoretical literature in such a way that experimentalists might appreciate the resulting conclusions

    Real-time imaging of bHLH transcription factors reveals their dynamic control in the multipotency and fate choice of neural stem cells

    Get PDF
    The basic-helix-loop-helix (bHLH) transcription factors Ascl1/Mash1, Hes1, and Olig2 regulate the fate choice of neurons, astrocytes, and oligodendrocytes, respectively; however, these factors are coexpressed in self-renewing multipotent neural stem cells (NSCs) even before cell fate determination. This fact raises the possibility that these fate determination factors are differentially expressed between self-renewing and differentiating NSCs with unique expression dynamics. Real-time imaging analysis utilizing fluorescent proteins is a powerful strategy for monitoring expression dynamics. Fusion with fluorescent reporters makes it possible to analyze the dynamic behavior of specific proteins in living cells. However, it is technically challenging to conduct long-term imaging of proteins, particularly those with low expression levels, because a high-sensitivity and low-noise imaging system is required, and very often bleaching of fluorescent proteins and cell toxicity by prolonged laser exposure are problematic. Furthermore, to analyze the functional roles of the dynamic expression of cellular proteins, it is essential to image reporter fusion proteins that are expressed at comparable levels to their endogenous expression. In this review, we introduce our recent reports about the dynamic control of bHLH transcription factors in multipotency and fate choice of NSCs, focusing on real-time imaging of fluorescent reporters fused with bHLH transcription factors. Our imaging results indicate that bHLH transcription factors are expressed in an oscillatory manner by NSCs, and that one of them becomes dominant during fate choice. We propose that the multipotent state of NSCs correlates with the oscillatory expression of several bHLH transcription factors, whereas the differentiated state correlates with the sustained expression of a single bHLH transcription factor

    The role of neurogenesis in olfaction-dependent behaviors.

    Get PDF
    Newly born neurons continuously migrate into the main and accessory olfactory bulbs and modulate the output of projection neurons. Despite some contradictory results, it is becoming clear that these newly born neurons play an important role in the response to some odorant cues. In this minireview, we discuss the recent findings surrounding the functional significance of adult neurogenesis in olfaction-dependent behaviors

    Genetic Methods to Identify and Manipulate Newly Born Neurons in the Adult Brain

    Get PDF
    Although mammalian neurogenesis is mostly completed by the perinatal period, new neurons are continuously generated in the subventricular zone of the lateral ventricle and the subgranular zone of the hippocampal dentate gyrus. Since the discovery of adult neurogenesis, many extensive studies have been performed on various aspects of adult neurogenesis, including proliferation and fate-specification of adult neural stem cells, and the migration, maturation and synaptic integration of newly born neurons. Furthermore, recent research has shed light on the intensive contribution of adult neurogenesis to olfactory-related and hippocampus-mediated brain functions. The field of adult neurogenesis progressed tremendously thanks to technical advances that facilitate the identification and selective manipulation of newly born neurons among billions of pre-existing neurons in the adult central nervous system. In this review, we introduce recent advances in the methodologies for visualizing newly generated neurons and manipulating neurogenesis in the adult brain. Particularly, the application of site-specific recombinases and Tet inducible system in combination with transgenic or gene targeting strategy is discussed in further detail

    Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development.

    Get PDF
    Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment and polarity

    Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum

    Get PDF
    Serum response has been used as a model for studying signaling transduction for many biological events such as cell proliferation and survival. Although expression of many genes is up- or down-regulated after serum stimulation, the Notch effector Hes1 displays oscillatory response. However, the precise mechanism and biological significance of this oscillation remain to be determined. Here, we identified serum-induced ultradian oscillators, including molecules in Stat and Smad signaling. Stat and Smad oscillations involve activation of Stat3 and Smad1 and delayed negative feedback by their inhibitors Socs3 and Smad6, respectively. Moreover, Stat oscillations induce oscillatory expression of Hes1 by regulating its half-life, and loss of Hes1 oscillations leads to G1 phase retardation of the cell cycle. These results indicate that coupled Stat and Hes1 oscillations are important for efficient cell proliferation and provide evidence that expression modes of signaling molecules affect downstream cellular events

    Three-dimensional live imaging of Atoh1 reveals the dynamics of hair cell induction and organization in the developing cochlea

    Get PDF
    During cochlear development, hair cells (HCs) and supporting cells differentiate in the prosensory domain to form the organ of Corti, but how one row of inner HCs (IHCs) and three rows of outer HCs (OHCs) are organized is not well understood. Here, we investigated the process of HC induction by monitoring Atoh1 expression in cochlear explants of Atoh1-EGFP knock-in mouse embryos and showed that only the cells that express Atoh1 over a certain threshold are selected for HC fate determination. HC induction initially occurs at the medial edge of the prosensory domain to form IHCs and subsequently at the lateral edge to form OHCs, while Hedgehog signaling maintains a space between IHCs and OHCs, leading to formation of the tunnel of Corti. These results reveal dynamic Atoh1 expression in HC fate control and suggest that multi-directional signals regulate OHC induction, thereby organizing the prototype of the organ of Corti

    Light-induced silencing of neural activity in Rosa26 knock-in and BAC transgenic mice conditionally expressing the microbial halorhodopsin eNpHR3

    Get PDF
    An engineered light-inducible chloride pump, Natronomonas pharaonis halorhodopsin 3 (eNpHR3) enables temporally and spatially precise inhibition of genetically defined cell populations in the intact nervous tissues. In this report, we show the generation of new mouse strains that express eNpHR3-EYFP fusion proteins after Cre- and/or Flp-mediated recombination to optically inhibit neuronal activity. In these mouse strains, Cre/Flp recombination induced high levels of opsin expression. We confirmed their light-induced activities by brain slice whole-cell patch clamp experiments. eNpHR3-expressing neurons were optically hyperpolarized and silenced from firing action potentials. In prolonged silencing of action potentials, eNpHR3 was superior to eNpHR2, a former version of the engineered pump. Thus, these eNpHR3 mouse strains offer reliable genetic tools for light-induced inhibiting of neuronal activity in defined sets of neurons

    Mammalian hairy and Enhancer of Split Homolog 1 Regulates Differentiation of Retinal Neurons and Is Essential for Eye Morphogenesis

    Get PDF
    AbstractMammalian hairy and Enhancer of split homolog 1 (HES1), a basic helix-loop-helix factor gene, is expressed in retinal progenitor cells, and its expression decreases as differentiation proceeds. Retinal progenitor cells infected with HES1-transducing retrovirus did not differentiate into mature retinal cells, suggesting that persistent expression of HES1 blocks retinal development. In contrast, in the retina of HES1-null mutant mice, differentiation was accelerated, and rod and horizontal cells appeared prematurely and formed abnormal rosette-like structures. Lens and cornea development was also severely disturbed. Furthermore, in the mutant retina, bipolar cells extensively died and finally disappeared. These studies provide evidence that HES1 regulates differentiation of retinal neurons and is essential for eye morphogenesis
    corecore