86 research outputs found

    Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma

    Get PDF
    Multiple myeloma is a malignant B-cell neoplasm that involves the skeleton in approximately 80% of the patients. With an average age of 60 years and a 5-years survival of nearly 45% Brenner et al. (Blood 111:2516–2520, 35) the onset is to be classified as occurring still early in life while the disease can be very aggressive and debilitating. In the last decades, several new imaging techniques were introduced. The aim of this review is to compare the different techniques such as radiographic survey, multidetector computed tomography (MDCT), whole-body magnetic resonance imaging (WB-MRI), fluorodeoxyglucose positron emission tomography- (FDG-PET) with or without computed tomography (CT), and 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) scintigraphy. We conclude that both FDG-PET in combination with low-dose CT and whole-body MRI are more sensitive than skeleton X-ray in screening and diagnosing multiple myeloma. WB-MRI allows assessment of bone marrow involvement but cannot detect bone destruction, which might result in overstaging. Moreover, WB-MRI is less suitable in assessing response to therapy than FDG-PET. The combination of PET with low-dose CT can replace the golden standard, conventional skeletal survey. In the clinical practise, this will result in upstaging, due to the higher sensitivity

    Design of analog front-ends for the RD53 demonstrator chip

    Get PDF
    The RD53 collaboration is developing a large scale pixel front-end chip, which will be a tool to evaluate the performance of 65 nm CMOS technology in view of its application to the readout of the innermost detector layers of ATLAS and CMS at the HL-LHC. Experimental results of the characterization of small prototypes will be discussed in the frame of the design work that is currently leading to the development of the large scale demonstrator chip RD53A to be submitted in early 2017. The paper is focused on the analog processors developed in the framework of the RD53 collaboration, including three time over threshold front-ends, designed by INFN Torino and Pavia, University of Bergamo and LBNL and a zero dead time front-end based on flash ADC designed by a joint collaboration between the Fermilab and INFN. The paper will also discuss the radiation tolerance features of the front-end channels, which were exposed to up to 800 Mrad of total ionizing dose to reproduce the system operation in the actual experiment

    Exploration in teaching and intelligent systems

    No full text

    Microelectronics Packaging Handbook

    No full text

    Using OR to support the development of an integrated musculo-skeletal service

    No full text
    This paper discusses the question of how operational research in general, and discrete event simulation in particular, can help to meet management challenges in hospital-based orthopaedics medicine. It focuses on the reduction of waiting times for elective patients, both for a first outpatient appointment and for the subsequent commencement of in-patient treatment. The research is based on a series of projects carried out by students from the Department of Management Science, University Strathclyde in Stobhill Hospital and the Glasgow Royal Infirmary between 1999 and 2003. An increasingly detailed and complex simulation model was developed for the musculo-skeletal service provided by these hospitals. The paper discusses the application of a modelling methodology-based on the idea of requisite models evolving over time-that is participatory, iterative and focused on enhancing the clients' understanding of the main performance drivers of the service. It concludes that this methodology fits well with successful strategies to sustain reductions in waiting times
    • …
    corecore