13 research outputs found

    Candida albicans biofilm formation on peptide functionalized polydimethylsiloxane

    Get PDF
    In order to prevent biofilm formation by Candida albicans, several cationic peptides were covalently bound to polydimethylsiloxane (PDMS). The salivary peptide histatin 5 and two synthetic variants (Dhvar 4 and Dhvar 5) were used to prepare peptide functionalized PDMS using 4-azido-2,3,5,6-tetrafluoro-benzoic acid (AFB) as an interlinkage molecule. In addition, polylysine-, polyarginine-, and polyhistidine-PDMS surfaces were prepared. Dhvar 4 functionalized PDMS yielded the highest reduction of the number of C. albicans biofilm cells in the Modified Robbins Device. Amino acid analysis demonstrated that the amount of peptide immobilized on the modified disks was in the nanomole range. Poly-d-lysine PDMS, in particular the homopeptides with low molecular weight (2500 and 9600) showed the highest activity against C. albicans biofilms, with reductions of 93% and 91%, respectively. The results indicate that the reductions are peptide dependent

    Design and fabrication of a low cost implantable bladder pressure monitor

    Get PDF
    In the frame of the Flemish Community funded project Bioflex we developed and fabricated an implant for short term (< 7 days) bladder pressure monitoring, and diagnosis of incontinence. This implant is soft and flexible to prevent damaging the bladder's inner wall. It contains a standard flexible electronic circuit connected to a battery, which are embedded in surface treated silicone to enhance the biocompatibility and prevent salt deposition. This article describes the fabrication of the pill and the results of preliminary cytotoxicity tests. The electronic design and its tests, implantation and the result of the in-vivo experimentation will be presented in other articles

    Low Cost, Biocompatible Elastic and Conformable Electronic Technologies using Mid in Stretchable Polymer

    No full text
    For user comfort reasons, electronic circuits for implantation in the human body or for use as smart clothes should ideally be soft, stretchable and elastic. In this contribution the results of an MUD (Molded Interconnect Device) technology will be presented, showing the feasibility of functional stretchable electronic circuits. In the developed technology rigid or flexible standard components are interconnected by meander shaped metallic wires and embedded by molding in a stretchable substrate polymer. Several technologies have been developed to this purpose, which combine low cost and good reliability under mechanical strain. In this way reliable stretchability of the circuits above 100% has been demonstrated. Enhanced reliability has been reached using an additional conductive polymer layer
    corecore