7 research outputs found

    Predicting market squid (Doryteuthis opalescens) landings from pre-recruit abundance

    Get PDF
    The fishery for market squid (Doryteuthis opalescens) in California is typical of many of the world’s cephalopod fisheries, in that a very short life span and the effect of environmental forcing on recruitment result in enormous interannual variability in catches and population size. We evaluate the utility of a pre-recruit index of squid abundance that is based on midwater trawl sampling in the 3–5 months preceding the onset of the fishery as a basis for predicting landings. Catches in the survey largely represent squid in the 30–50 mm dorsal mantle length size range, representing individuals 30–90 day old. Catch-per-unit-effort statistics are derived from simple twofactor Δ-Generalized Linear Models, with year and station as main effects and numbers per tow as the dependent variable. Regional models for northern and southern squid populations are developed. Pre-recruit indices, as well as indices of squid prey (krill) abundance are compared with landings data, as well as estimates of squid spawning stock biomass derived from an egg escapement model. Our results show that the abundance of prerecruit market squid and krill sampled in the survey tracks both catches and overall population size, providing the potential to forecast landings. Our findings are consistent with a sparse but growing literature showing the potential utility of pre-recruit surveys to inform fisheries participants and managers

    Predicting market squid (Doryteuthis opalescens) landings from pre-recruit abundance

    Get PDF
    The fishery for market squid (Doryteuthis opalescens) in California is typical of many of the world’s cephalopod fisheries, in that a very short life span and the effect of environmental forcing on recruitment result in enormous interannual variability in catches and population size. We evaluate the utility of a pre-recruit index of squid abundance that is based on midwater trawl sampling in the 3–5 months preceding the onset of the fishery as a basis for predicting landings. Catches in the survey largely represent squid in the 30–50 mm dorsal mantle length size range, representing individuals 30–90 day old. Catch-per-unit-effort statistics are derived from simple twofactor Δ-Generalized Linear Models, with year and station as main effects and numbers per tow as the dependent variable. Regional models for northern and southern squid populations are developed. Pre-recruit indices, as well as indices of squid prey (krill) abundance are compared with landings data, as well as estimates of squid spawning stock biomass derived from an egg escapement model. Our results show that the abundance of prerecruit market squid and krill sampled in the survey tracks both catches and overall population size, providing the potential to forecast landings. Our findings are consistent with a sparse but growing literature showing the potential utility of pre-recruit surveys to inform fisheries participants and managers

    Optogenetic stimulation reveals a latent tipping point in cortical networks during ictogenesis

    No full text
    Brain state transitions are readily apparent from changes in brain rhythms1, but are difficult to predict, suggestive that the underlying cause is latent to passive recording methods. Among the most important transitions, clinically, are the starts of seizures. We here show that an “active probing” approach may have several important benefits for epileptic management, including by helping predict these transitions. We used mice expressing the optogenetic actuator, channelrhodopsin, in pyramidal cells, allowing this population to be stimulated in isolation. Intermittent stimulation at frequencies as low as 0.033 Hz (period = 30 s) delayed the onset of seizure-like events in an acute brain slice model of ictogenesis, but the effect was lost if stimulation was delivered at even lower frequencies (1/min). Notably, active probing additionally provides advance indication of when seizure-like activity is imminent, revealed by monitoring the postsynaptic response to stimulation. The postsynaptic response, recorded extracellularly, showed an all-or-nothing change in both amplitude and duration, a few hundred seconds before seizure-like activity began – a sufficient length of time to provide a helpful warning of an impending seizure. The change in the post-synaptic response then persisted for the remainder of the recording, indicative of a state change from a pre-epileptic to a pro-epileptic network. This occurred in parallel with a large increase in the stimulation-triggered Ca2+ entry into pyramidal dendrites, and a step increase in the number of postsynaptic somatic action potentials, both consistent with a reduction in the threshold for dendritic action potentials. In 0 Mg2+ bathing media, the reduced threshold was not associated with changes in glutamatergic synaptic function, nor of GABAergic release from either parvalbumin or somatostatin interneurons, but simulations indicate that the step change in the optogenetic response can instead arise from incremental increases in intracellular [Cl-]. The change in the response to stimulation was replicated by artificially raising intracellular [Cl-], using the optogenetic chloride-pump, Halorhodopsin. By contrast, increases in extracellular [K+] cannot account for the firing patterns in the response to stimulation, although this, and other cellular changes, may contribute to ictal initiation in other circumstances. We describe how these various cellular changes form a synergistic network of positive feedback mechanisms, which may explain the precipitous nature of seizure onset. This model of seizure initiation draws together several major lines of epilepsy research and as well as providing an important proof-of-principle regarding the utility of open-loop brain stimulation for clinical management of the condition

    A Mixed-Methods Protocol to Identify Best Practices for Implementing Pharmacogenetic Testing in Clinical Settings

    No full text
    Using a patient’s genetic information to inform medication prescriptions can be clinically effective; however, the practice has not been widely implemented. Health systems need guidance on how to engage with providers to improve pharmacogenetic test utilization. Approaches from the field of implementation science may shed light on the complex factors affecting pharmacogenetic test use in real-world settings and areas to target to improve utilization. This paper presents an approach to studying the application of precision medicine that utilizes mixed qualitative and quantitative methods and implementation science frameworks to understand which factors or combinations consistently account for high versus low utilization of pharmocogenetic testing. This approach involves two phases: (1) collection of qualitative and quantitative data from providers—the cases—at four clinical institutions about their experiences with, and utilization of, pharmacogenetic testing to identify salient factors; and (2) analysis using a Configurational Comparative Method (CCM), using a mathematical algorithm to identify the minimally necessary and sufficient factors that distinguish providers who have higher utilization from those with low utilization. Advantages of this approach are that it can be used for small to moderate sample sizes, and it accounts for conditions found in real-world settings by demonstrating how they coincide to affect utilization
    corecore