117 research outputs found

    Smoking-induced aggravation of experimental arthritis is dependent of aryl hydrocarbon receptor activation in Th17 cells.

    Get PDF
    Background: Epidemiologic studies have highlighted the association of environmental factors with the development and progression of autoimmune and chronic inflammatory diseases. Among the environmental factors, smoking has been associated with increased susceptibility and poor prognosis in rheumatoid arthritis (RA). However, the immune and molecular mechanism of smoking-induced arthritis aggravation remains unclear. The transcription factor aryl hydrocarbon receptor (AHR) regulates the generation of Th17 cells, CD4 T cells linked the development of autoimmune diseases. AHR is activated by organic compounds including polycyclic aromatic hydrocarbons (PAHs), which are environmental pollutants that are also present in cigarette smoke. In this study, we investigated the role of AHR activation in the aggravation of experiment arthritis induced by exposure to cigarette smoke. Methods: Mice were exposed to cigarette smoke during the developmental phase of antigen-induced arthritis and collagen-induced arthritis to evaluate the effects of smoking on disease development. Aggravation of articular inflammation was assessed by measuring neutrophil migration to the joints, increase in articular hyperalgesia and changes in the frequencies of Th17 cells. In vitro studies were performed to evaluate the direct effects of cigarette smoke and PAH on Th17 differentiation. We also used mice genetically deficient for AHR (Ahr KO) and IL-17Ra (Il17ra KO) to determine the in vivo mechanism of smoking-induced arthritis aggravation. Results: We found that smoking induces arthritis aggravation and increase in the frequencies of Th17 cells. The absence of IL-17 signaling (Il17ra KO) conferred protection to smoking-induced arthritis aggravation. Moreover, in vitro experiments showed that cigarette smoke can directly increase Th17 differentiation of T cells by inducing AHR activation. Indeed, Ahr KO mice were protected from cigarette smoke-induced arthritis aggravation and did not display increase in TH17 frequencies, suggesting that AHR activation is an important mechanism for cigarette smoke effects on arthritis. Finally, we demonstrate that PAHs are also able to induce arthritis aggravation. Conclusions: Our data demonstrate that the disease-exacerbating effects of cigarette smoking are AHR dependent and environmental pollutants with AHR agonist activity can induce arthritis aggravation by directly enhancing Th17 cell development

    HNF1A G319S variant, active cigarette smoking and incident type 2 diabetes in Aboriginal Canadians: a population-based epidemiological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a recent report of large-scale association analysis, a type 2 diabetes susceptibility locus near <it>HNF1A </it>was identified in predominantly European descent populations. A population-specific G319S polymorphism in <it>HNF1A </it>was previously identified in Aboriginal Canadians who have a high prevalence of type 2 diabetes. We aimed to investigate the association of the <it>HNF1A </it>G319S polymorphism with incident type 2 diabetes and to assess whether clinical risk variables for type 2 diabetes influence the association in an Aboriginal population.</p> <p>Methods</p> <p>Of 606 participants who were free of diabetes at baseline in 1993-1995, 540 (89.1%) participated in 10-year follow-up assessments in 2003-2005. Fasting glucose and a 75-g oral glucose tolerance test were obtained to determine incident type 2 diabetes. Participants were genotyped for the <it>HNF1A </it>G319S polymorphism. Interviewers administered questionnaires on smoking behavior.</p> <p>Results</p> <p>The incidence rates of type 2 diabetes were 14.2% (55/388) in major allele homozygotes and 31.2% (29/93) in minor allele carriers (p < 0.001). The <it>HNF1A </it>G319S carrier status was associated with incident type 2 diabetes (odds ratio [OR] 3.78 [95% CI 2.13-6.69]) after adjustment for age, sex, hypertension, triglyceride, HDL cholesterol, and waist circumference. A statistical interaction was observed between <it>HNF1A </it>G319S and baseline active cigarette smoking on the development of type 2 diabetes with similar adjustment (p = 0.006). When participants were stratified by baseline smoking status, <it>HNF1A </it>G319S carriers who were active smokers had increased risk of developing diabetes (OR 6.91 [95% CI 3.38-14.12]), while the association was attenuated to non-significance among non-smokers (1.11 [0.40-3.08]).</p> <p>Conclusions</p> <p>The <it>HNF1A </it>G319S variant is associated with incident type 2 diabetes in Aboriginal Canadians. Furthermore, cigarette smoking appears to amplify incident diabetes risk in carriers of <it>HNF1A </it>G319S.</p

    Nrf2, a PPARγ Alternative Pathway to Promote CD36 Expression on Inflammatory Macrophages: Implication for Malaria

    Get PDF
    CD36 is the major receptor mediating nonopsonic phagocytosis of Plasmodium falciparum-parasitized erythrocytes by macrophages. Its expression on macrophages is mainly controlled by the nuclear receptor PPARγ. Here, we demonstrate that inflammatory processes negatively regulate CD36 expression on human and murine macrophages, and hence decrease Plasmodium clearance directly favoring the worsening of malaria infection. This CD36 downregulation in inflammatory conditions is associated with a failure in the expression and activation of PPARγ. Interestingly, using siRNA mediating knock down of Nrf2 in macrophages or Nrf2- and PPARγ-deficient macrophages, we establish that in inflammatory conditions, the Nrf2 transcription factor controls CD36 expression independently of PPARγ. In these conditions, Nrf2 activators, but not PPARγ ligands, enhance CD36 expression and CD36-mediated Plasmodium phagocytosis. These results were confirmed in human macrophages and in vivo where only Nrf2 activators improve the outcome of severe malaria. Collectively, this report highlights that the Nrf2 transcription factor could be an alternative target to PPARγ in the control of severe malaria through parasite clearance

    IL-17A modulates oxidant stress-induced airway hyperresponsiveness but not emphysema.

    Get PDF
    IL-17A induces the release of pro-inflammatory cytokines and of reactive oxygen species which could lead to neutrophilic inflammation. We determined the role of IL-17 receptor (IL-17R) signalling in oxidant-induced lung emphysema and airway hyperresponsiveness. IL-17R(-/-) and wild-type C57/BL6 mice were exposed to ozone (3 ppm; 3 hours) for 12 times over 6 weeks. Bronchial responsiveness to acetylcholine was measured, and lungs were retrieved. Mean linear intercept (Lm) and isometric contractile responses of intrapulmonary airways to acetylcholine were determined. In wild-type mice but not in IL-17R(-/-), chronic ozone exposure caused airway hyperresponsiveness. The increase in Lm after chronic ozone exposure of wild-type mice was also observed in IL-17R(-/-) mice. The increased maximal contractile response to acetylcholine seen in airways of wild-type mice exposed to ozone was abolished in IL-17R(-/-) mice. p38-mitogen-activated protein kinase (MAPK) and dexamethasone-dependent increase in contractile response was reduced in airways from IL-17R(-/-) ozone-exposed mice. Lung inflammation scores were not altered in IL-17R(-/-) mice exposed to ozone compared to wild-type mice. The increased release of IL-17 and IL-1β, and the activation of p38 MAPK in the lungs of ozone-exposed mice was reduced in IL-17R(-/-) mice. IL-17R signalling underlies the increase in airway hyperresponsiveness seen after ozone exposure, mediated by the increased contractility of airway smooth muscle. The emphysema and lung inflammation induced by ozone is not dependent on IL-17

    Toll-like receptor (TLR)2 and TLR3 synergy and cross-inhibition in murine myeloid dendritic cells.

    No full text
    Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs) and in the induction of immune responses. Few studies have been devoted to address the impact of TLR2 (a fully MyD88-dependent receptor) and TLR3 (a fully TRIF-dependent receptor) co-activation on DC functions, especially in the mouse system. Using canonical agonists, we show that TLR2 acts in concert with TLR3 to induce the synthesis of inflammatory cytokines (TNF-alpha, IL-6), of some IL-12 family members (IL-12p40, IL-12p23, IL-27p28) and of the Notch ligand Delta-4 by mouse DCs. In contrast, TLR2 interferes with the TLR3-induced expression of type I interferon stimulated genes (MIG/CXCL9, IP-10/CXCL10, GARG39) and IL-12p35. We also report that TLR2 cooperates with TLR3 to enhance the DC-mediated production of IFN-gamma by Natural Killer cells and by conventional Ag-specific T lymphocytes. To conclude, our data support the existence of TLR2 and TLR3 synergy and cross-inhibition in DCs that could be important to strengthen immune responses during infection.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    • …
    corecore