1,119 research outputs found

    Plant cell walls: impact on nutrient bioaccessibility and digestibility

    Get PDF
    Cell walls are important structural components of plants, affecting both the bioaccessibility and subsequent digestibility of the nutrients that plant-based foods contain. These supramolecular structures are composed of complex heterogeneous networks primarily consisting of cellulose, and hemicellulosic and pectic polysaccharides. The composition and organization of these different polysaccharides vary depending on the type of plant tissue, imparting them with specific physicochemical properties. These properties dictate how the cell walls behave in the human gastrointestinal tract, and how amenable they are to digestion, thereby modulating nutrient release from the plant tissue. This short narrative review presents an overview of our current knowledge on cell walls and how they impact nutrient bioaccessibility and digestibility. Some of the most relevant methods currently used to characterize the food matrix and the cell walls are also described

    On formation of domain wall lattices

    Full text link
    We study the formation of domain walls in a phase transition in which an S_5\times Z_2 symmetry is spontaneously broken to S_3\times S_2. In one compact spatial dimension we observe the formation of a stable domain wall lattice. In two spatial dimensions we find that the walls form a network with junctions, there being six walls to every junction. The network of domain walls evolves so that junctions annihilate anti-junctions. The final state of the evolution depends on the relative dimensions of the simulation domain. In particular we never observe the formation of a stable lattice of domain walls for the case of a square domain but we do observe a lattice if one dimension is somewhat smaller than the other. During the evolution, the total wall length in the network decays with time as t^{-0.71}, as opposed to the usual t^{-1} scaling typical of regular Z_2 networks.Comment: 7 pages, 4 figures. Minor changes, final version accepted for publication in Phys. Rev.

    A solar cycle of spacecraft anomalies due to internal charging

    No full text
    International audienceIt is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved

    An entirely analytical cosmological model

    Full text link
    The purpose of the present study is to show that in a particular cosmological model, with an affine equation of state, one can obtain, besides the background given by the scale factor, Hubble and deceleration parameters, a representation in terms of scalar fields and, more important, explicit mathematical expressions for the density contrast and the power spectrum. Although the model so obtained is not realistic, it reproduces features observed in some previous numerical studies and, therefore, it may be useful in the testing of numerical codes and as a pedagogical tool.Comment: 4 pages (revtex4), 4 figure

    The glucose triad and its role in comprehensive glycaemic control: current status, future management

    Get PDF
    The prevalence of type 2 diabetes across the world has been described as a global pandemic. Despite significant efforts to limit both the increase in the number of cases and the long-term impact on morbidity and mortality, the total number of people with diabetes is projected to continue to rise and most patients still fail to achieve adequate glycaemic control. Optimal management of type 2 diabetes requires an understanding of the relationships between glycosylated haemoglobin (HbA1c), fasting plasma glucose and postprandial glucose (the glucose triad), and how these change during development and progression of the disease. Early and sustained control of glycaemia remains important in the management of type 2 diabetes. The contribution of postprandial glucose levels to overall glycaemic control and the role of postprandial glucose targets in disease management are currently debated. However, many patients do not reach HbA1C targets set according to published guidelines. As recent data suggest, if driving HbA1C down to lower target levels is not the answer, what other factors involved in glucose homeostasis can or should be targeted? Has the time come to change the treatment paradigm to include awareness of the components of the glucose triad, the existence of glucose variability and their potential influence on the choice of pharmacological treatment? It is becomingly increasingly clear that physicians are likely to have to consider plasma glucose levels both after the overnight fast and after meals as well as the variability of glucose levels, in order to achieve optimal glycaemic control for each patient. When antidiabetic therapy is initiated, physicians may need to consider selection of agents that target both fasting and postprandial hyperglycaemia

    Impact of string and monopole-type junctions on domain wall dynamics: implications for dark energy

    Full text link
    We investigate the potential role of string and monopole-type junctions in the frustration of domain wall networks using a velocity-dependent one-scale model for the characteristic velocity, vv, and the characteristic length, LL, of the network. We show that, except for very special network configurations, v^2 \lsim (HL)^2 \lsim (\rho_\sigma + \rho_\mu)/\rho_m where HH is the Hubble parameter and ρσ\rho_\sigma, ρμ\rho_\mu and ρm\rho_m are the average density of domain walls, strings and monopole-type junctions. We further show that if domain walls are to provide a significant contribution to the dark energy without generating exceedingly large CMB temperature fluctuations then, at the present time, the network must have a characteristic length L_0 \lsim 10 \Omega_{\sigma 0}^{-2/3} {\rm kpc} and a characteristic velocity v_0 \lsim 10^{-5} \Omega_{\sigma 0}^{-2/3} where Ωσ0=ρσ0/ρc0\Omega_{\sigma 0}=\rho_{\sigma 0}/\rho_{c 0} and ρc\rho_c is the critical density. In order to satisfy these constraints with Ωσ01\Omega_{\sigma 0} \sim 1, ρm0\rho_{m 0} would have to be at least 10 orders of magnitude larger than ρσ0\rho_{\sigma 0}, which would be in complete disagreement with observations. This result provides very strong additional support for the conjecture that no natural frustration mechanism, which could lead to a significant contribution of domain walls to the dark energy budget, exists.Comment: 4 pages, 1 figur
    corecore