7 research outputs found
Keratin-Butyrate Scaffolds Promote Skin Wound Healing in Diabetic Rats Through Down-Regulation of IL-1β and Up-Regulation of Keratins 16 and 17
Impaired wound healing particularly in diabetics creates a significant healthcare burden. The study aimed to evaluate the effect of keratin-butyrate fibers (FKDP +0.1%NaBu) in a full-thickness skin wound model in 30 diabetic rats. Physicochemical examination showed that the obtained dressing possesses a heterogeneous structure and butyrate was slowly released into the wound. Moreover, the obtained dressing is nontoxic and supports cell growth. In vivo results showed that keratin-butyrate dressing accelerated wound healing on days 4 and 7 post-injury (p < .05). Histopathological and immunofluorescence examination revealed that applied dressing stimulated macrophage infiltration, which favors tissue remodeling and regeneration. The dressing was naturally incorporated into regenerating tissue. The highest mRNA expression level of interleukin 1β (IL-1β) was observed during the first 2 weeks in the control wounds compared to FKDP +0.1%NaBu treated wounds, in which IL-1β was significantly decreased. In FKDP +0.1%NaBu dressed wounds, mRNA expression of IL-10 and VEGF increased significantly (p < .05) from day 14. Keratin-butyrate treated wounds enhanced mRNA expression of keratin 16 and 17 and zonula occludens protein-1 and junctional adhesion molecules (p < .05) on days 14, 21, and 28 post-injuries. Our study showed that keratin butyrate dressing is safe and can efficiently accelerate skin wound healing in diabetic rats
Wpływ homeologicznych substytucji D(A) i D(B) w siewkach heksaploidalnego pszenżyta na gromadzenie suchej masy, akumulację oraz wykorzystanie azotu i fosforu w kulturze hydroponicznej
The accumulation and utilization efficiency of nitrogen and phosphorus were studied using hydroponic cultures of seedlings of the ‘Presto’ and ‘Rhino’ D(A) and D(B) substitution lines of hexaploid triticale. The results were significantly affected by homoeology group of chromosomes participating in a substitution, the A or B genome origin of replaced chromosome and genetic background of triticale cultivar. The substitutions 4D(4B) and 5D(5B) resulted in an increase of plant dry matter in relation to the non-substituted cultivars. The significant increase of N accumulation was found in 3D(3A) and 4D(4B) of ‘Rhino’, and 5D(5B) and 4D(4B) of ‘Presto’. The improvement of N utilization efficiency was recorded for 2D(2A) and 1D(1B) of ‘Presto’, and 5D(5B), 7D(7A) and 5D(5A) of ‘Rhino’. The P accumulation was distinctly improved in ‘Presto’ 5D(5B) substitution. The P utilization efficiency was improved in all substitutions containing 4D or 6D as well as in ‘Presto’ 2D(2B) and 5D(5B).Badano akumulację i efektywność wykorzystania azotu i fosforu w warunkach kultury hydroponicznej w siewkach linii substytucyjnych D(A) i D(B) heksaploidalnego pszenżyta odmian Rhino i Presto. Obecność substytucji chromosomów grupy D przy zachowaniu w całości genomu żytniego (R) istotnie zmieniała gospodarkę mineralną siewek. Obecność substytucji 4D(4B) i 5D(5B) powodowała zwiększenie suchej masy siewek w porównaniu do siewek bez substytucji. Obserwowano zwiększenie akumulacji azotu w siewkach odmiany Rhino z substytucjami 3D(3A) i 4D(4B) oraz odmiany Presto z substytucjami 5D(5B) and 4D(4B). Zwiększenie wykorzystania azotu zaobserwowano w substytucjach 2D(2A) and 1D(1B) odmiany Presto i w substytucjach 5D(5B), 7D(7A) i 5D(5A) odmiany Rhino. Akumulacja fosforu była istotnie zwiększona w siewkach odmiany Presto z substytucją 5D(5B). Wykorzystanie fosforu było znacznie wyższe w siewkach obu odmian zawierających substytucje chromosomów 4D i 6D oraz w siewkach odmiany Presto z substytucjami 2D(2B) i 5D(5B)
Experimental Evaluation of Sub-Sampling IQ Detection for Low-Level RF Control in Particle Accelerator Systems
The low-level radio frequency (LLRF) control system is one of the fundamental parts of a particle accelerator, ensuring the stability of the electro-magnetic (EM) field inside the resonant cavities. It leverages on the precise measurement of the field by in-phase/quadrature (IQ) detection of an RF probe signal from the cavities, usually performed using analogue downconversion. This approach requires a local oscillator (LO) and is subject to hardware non-idealities like mixer nonlinearity and long-term temperature drifts. In this work, we experimentally evaluate IQ detection by direct sampling for the LLRF system of the Polish free electron laser (PolFEL) now under development at the National Centre for Nuclear Research (NCBJ) in Poland. We study the impact of the sampling scheme and of the clock phase noise for a 1.3-GHz input sub-sampled by a 400-MSa/s analogue-to-digital converter (ADC), estimating amplitude and phase stability below 0.01% and nearly 0.01°, respectively. The results are in line with state-of-the-art implementations, and demonstrate the feasibility of direct sampling for GHz-range LLRF systems
Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia
12 páginas, 9 figuras, 1 tabla -- PAGS nros. 830-841The petunia gene, ZPT2-3, encodes a Cys2/His2-type zinc finger protein. Here, we describe the expression of ZPT2-3 in response to various stresses and the effects of ZPT2-3 overexpression in transgenic petunia. Mechanical wounding induced accumulation of ZPT2-3 transcript, and the activity of ZPT2-3::luciferase was conferred by the 1668-bp ZPT2-3 upstream sequence, both locally and systemically. This induction was mediated by a jasmonic acid (JA)-dependent and ethylene-independent pathway. ZPT2-3 expression was also induced by cold, drought, and heavy metal treatments. The same ZPT2-3 promoter sequence showed similar responsiveness to wounding, cold, drought, and JA treatments in Arabidopsis when investigated in a β-glucuronidase (GUS) reporter gene, indicating conservation of similar signaling pathways between the two plant species. ZPT2-3 functioned as an active repressor in a transient assay using Arabidopsis leaves. Constitutive overexpression of ZPT2-3 in transgenic petunia plants increased tolerance to dehydration. These results demonstrate the involvement of ZPT2-3 in plant response to various stresses, and suggest its potential utility to improve drought toleranceThis work was supported by a PROBRAIN grant from the Bio-oriented Technology Research Advancement Institution (BRAIN) of Japan and a COE-promotion fund from the Science and Technology Agency of JapanPeer reviewe