8 research outputs found

    Cancer stem cells, not bulk tumor cells, determine mechanisms of resistance to SMO inhibitors.

    Get PDF
    The emergence of treatment resistance significantly reduces the clinical utility of many effective targeted therapies. Although both genetic and epigenetic mechanisms of drug resistance have been reported, whether these mechanisms are stochastically selected in individual tumors or governed by a predictable underlying principle is unknown. Here, we report that the dependence of cancer stem cells (CSCs), not bulk tumor cells, on the targeted pathway determines the molecular mechanism of resistance in individual tumors. Using both spontaneous and transplantable mouse models of sonic hedgehog (SHH) medulloblastoma (MB) treated with an SHH/Smoothened inhibitor, sonidegib/LDE225, we show that genetic-based resistance occurs only in tumors that contain SHH-dependent CSCs (SD-CSCs). In contrast, SHH MBs containing SHH-dependent bulk tumor cells but SHH-independent CSCs (SI-CSCs) acquire resistance through epigenetic reprogramming. Mechanistically, elevated proteasome activity in SMOi-resistant SI-CSC MBs alters the tumor cell maturation trajectory through enhanced degradation of specific epigenetic regulators, including histone acetylation machinery components, resulting in global reductions in H3K9Ac, H3K14Ac, H3K56Ac, H4K5Ac, and H4K8Ac marks and gene expression changes. These results provide new insights into how selective pressure on distinct tumor cell populations contributes to different mechanisms of resistance to targeted therapies. This insight provides a new conceptual framework to understand responses and resistance to SMOis and other targeted therapies

    Addressing intra-tumoral heterogeneity and therapy resistance.

    No full text
    In the last several years, our appreciation of intra-tumoral heterogeneity has greatly increased due to accumulating evidence for the co-existence of genetically and epigenetically divergent cancer cells residing in different microenvironments within a tumor. Herein, we review recent literature discussing intra-tumoral heterogeneity in the context of therapy resistance mechanisms at the genetic, epigenetic and microenvironmental levels. We illustrate the influence of tumor microenvironment on therapy resistance and epigenetic states of cancer cells by highlighting the role of cancer stem cells in therapy resistance. We also summarize different strategies that have been employed to address various resistance mechanisms at genetic, epigenetic, and microenvironmental levels in preclinical and clinical studies. We propose that future personalized cancer therapy design needs to incorporate dynamic and comprehensive analyses of tumor heterogeneity landscape and multi-dimensional mechanisms of therapy resistance. Oncotarget 2016 Nov; 7(44):72322-72342

    Epigenetic States of cells of origin and tumor evolution drive tumor-initiating cell phenotype and tumor heterogeneity.

    No full text
    A central confounding factor in the development of targeted therapies is tumor cell heterogeneity, particularly in tumor-initiating cells (TIC), within clinically identical tumors. Here, we show how activation of the Sonic Hedgehog (SHH) pathway in neural stem and progenitor cells creates a foundation for tumor cell evolution to heterogeneous states that are histologically indistinguishable but molecularly distinct. In spontaneous medulloblastomas that arise in Patched (Ptch)(+/-) mice, we identified three distinct tumor subtypes. Through cell type-specific activation of the SHH pathway in vivo, we determined that different cells of origin evolved in unique ways to generate these subtypes. Moreover, TICs in each subtype had distinct molecular and cellular phenotypes. At the bulk tumor level, the three tumor subtypes could be distinguished by a 465-gene signature and by differential activation levels of the ERK and AKT pathways. Notably, TICs from different subtypes were differentially sensitive to SHH or AKT pathway inhibitors, highlighting new mechanisms of resistance to targeted therapies. In summary, our results show how evolutionary processes act on distinct cells of origin to contribute to tumoral heterogeneity, at both bulk tumor and TIC levels. Cancer Res; 74(17); 4864-74. ©2014 AACR. Cancer Res 2014 Sep 1; 74(17):4864-74
    corecore