31 research outputs found
Soft-Output Deep Neural Network-Based Decoding
Deep neural network (DNN)-based channel decoding is widely considered in the
literature. The existing solutions are investigated for the case of hard
output, i.e. when the decoder returns the estimated information word. At the
same time, soft-output decoding is of critical importance for iterative
receivers and decoders. In this paper, we focus on the soft-output DNN-based
decoding problem. We start with the syndrome-based approach proposed by
Bennatan et al. (2018) and modify it to provide soft output in the AWGN
channel. The new decoder can be considered as an approximation of the MAP
decoder with smaller computation complexity. We discuss various regularization
functions for joint DNN-MAP training and compare the resulting distributions
for [64, 45] BCH code. Finally, to demonstrate the soft-output quality we
consider the turbo-product code with [64, 45] BCH codes as row and column
codes. We show that the resulting DNN-based scheme is very close to the
MAP-based performance and significantly outperforms the solution based on the
Chase decoder. We come to the conclusion that the new method is prospective for
the challenging problem of DNN-based decoding of long codes consisting of short
component codes.Comment: This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no
longer be accessibl
Switching from visibility to invisibility via Fano resonances: theory and experiment
Subwavelength structures demonstrate many unusual optical properties which
can be employed for engineering functional metadevices, as well as scattering
of light and invisibility cloaking. Here we demonstrate that the suppression of
light scattering for any direction of observation can be achieved for an
uniform dielectric object with high refractive index, in a sharp contrast to
the cloaking with multilayered plasmonic structures suggested previously. Our
finding is based on the novel physics of cascades of Fano resonances observed
in the Mie scattering from a homogeneous dielectric rod. We observe this effect
experimentally at microwaves by employing high temperature-dependent dielectric
permittivity of a glass cylinder with heated water. Our results open a new
avenue in analyzing the optical response of hight-index dielectric
nanoparticles and the physics of cloaking.Comment: 8 pages, 4 figure
Phase diagram for the transition from photonic crystals to dielectric metamaterials
Photonic crystals and metamaterials represent two seemingly different classes
of artificial electromagnetic media but often they are composed of similar
structural elements arranged in periodic lattices. The important question is
how to distinguish these two types of periodic photonic structures when their
parameters, such as dielectric permittivity and lattice spacing, vary
continuously. Here, we discuss transitions between photonic crystals and
all-dielectric metamaterials and introduce the concept of a phase diagram and
an order parameter for such structured materials, based on the physics of Mie
and Bragg resonances. We show that a periodic photonic structure transforms
into a metamaterial when the Mie gap opens up below the lowest Bragg bandgap
where the homogenization approach can be justified and the effective
permeability becomes negative. Our theoretical approach is confirmed by
detailed microwave experiments for a metacrystal composed of a square lattice
of glass tubes filled with heated water. This analysis yields deep insight into
the properties of periodic photonic structures, and it also provides a useful
tool for designing different classes of electromagnetic materials in a broad
range of parameters.Comment: 7 pages, 6 figure
A Linear Time Algorithm for the Optimal Discrete IRS Beamforming
It remains an open problem to find the optimal configuration of phase shifts
under the discrete constraint for intelligent reflecting surface (IRS) in
polynomial time. The above problem is widely believed to be difficult because
it is not linked to any known combinatorial problems that can be solved
efficiently. The branch-and-bound algorithms and the approximation algorithms
constitute the best results in this area. Nevertheless, this work shows that
the global optimum can actually be reached in linear time in terms of the
number of reflective elements (REs) of IRS. The main idea is to geometrically
interpret the discrete beamforming problem as choosing the optimal point on the
unit circle. Although the number of possible combinations of phase shifts grows
exponentially with the number of REs, it turns out that there are merely a
linear number of points on the unit circle to consider. Furthermore, the
proposed algorithm can be viewed as a novel approach to a special case of the
discrete quadratic program (QP).Comment: 5 page
Fano resonances in antennas: General control over radiation patterns
The concepts of many optical devices are based on fundamental physical phenomena such as resonances. One of the commonly used devices is an electromagnetic antenna that converts localized energy into freely propagating radiation and vise versa, offering
Switchable invisibility of dielectric resonators
The study of invisibility of an infinite dielectric rod with high refractive index is based on the two-dimensional Mie scattering problem, and it suggests strong suppression of scattering due to the Fano interference between spectrally broad nonresonant waves and narrow Mie-resonant modes. However, when the dielectric rod has a finite extension, it becomes a resonator supporting the Fabry-Perot modes which introduce additional scattering and eventually destroy the invisibility. Here we reveal that for shorter rods with modest values of the aspect ratio r/L (where r and L are the radius and length of the rod, respectively), the lowest spectral window of the scattering suppression recovers completely, so that even a finite-size resonator may become invisible. We present a direct experimental verification of the concept of switchable invisibility at microwaves using a cylindrical finite-size resonator with high refractive index.This work was supported by the Russian Foundation for
Basic Research (Grant No. 16-02-00461), and the Australian
Research Counci
State-of-the-Art of Eggshell Waste in Materials Science: Recent Advances in Catalysis, Pharmaceutical Applications, and Mechanochemistry
Eggshell waste is among the most abundant waste materials coming from food processing technologies. Despite the unique properties that both its components (eggshell, ES, and eggshell membrane, ESM) possess, it is very often discarded without further use. This review article aims to summarize the recent reports utilizing eggshell waste for very diverse purposes, stressing the need to use a mechanochemical approach to broaden its applications. The most studied field with regards to the potential use of eggshell waste is catalysis. Upon proper treatment, it can be used for turning waste oils into biodiesel and moreover, the catalytic effect of eggshell-based material in organic synthesis is also very beneficial. In inorganic chemistry, the eggshell membrane is very often used as a templating agent for nanoparticles production. Such composites are suitable for application in photocatalysis. These bionanocomposites are also capable of heavy metal ions reduction and can be also used for the ozonation process. The eggshell and its membrane are applicable in electrochemistry as well. Due to the high protein content and the presence of functional groups on the surface, ESM can be easily converted to a high-performance electrode material. Finally, both ES and ESM are suitable for medical applications, as the former can be used as an inexpensive Ca2+ source for the development of medications, particles for drug delivery, organic matrix/mineral nanocomposites as potential tissue scaffolds, food supplements and the latter for the treatment of joint diseases, in reparative medicine and vascular graft producing. For the majority of the above-mentioned applications, the pretreatment of the eggshell waste is necessary. Among other options, the mechanochemical pretreatment has found an inevitable place. Since the publication of the last review paper devoted to the mechanochemical treatment of eggshell waste, a few new works have appeared, which are reviewed here to underline the sustainable character of the proposed methodology. The mechanochemical treatment of eggshell is capable of producing the nanoscale material which can be further used for bioceramics synthesis, dehalogenation processes, wastewater treatment, preparation of hydrophobic filters, lithium-ion batteries, dental materials, and in the building industry as cement
Transient effects in atmosphere and ionosphere preceding the 2015 M7.8 and M7.3 Gorkha–Nepal earthquakes
We analyze retrospectively/prospectively the transient variations of six different physical parameters in the atmosphere/ionosphere during the M7.8 and M7.3 earthquakes in Nepal, namely: 1) outgoing longwave radiation (OLR) at the top of the atmosphere (TOA); 2) GPS/TEC; 3) the very-low-frequency (VLF/LF) signals at the receiving stations in Bishkek (Kyrgyzstan) and Varanasi (India); 4) Radon observations; 5) Atmospheric chemical potential from assimilation models; and; 6) Air Temperature from NOAA ground stations. We found that in mid-March 2015, there was a rapid increase in the radiation from the atmosphere observed by satellites. This anomaly was located close to the future M7.8 epicenter and reached a maximum on April 21–22. The GPS/TEC data analysis indicated an increase and variation in electron density, reaching a maximum value during April 22–24. A strong negative TEC anomaly in the crest of EIA (Equatorial Ionospheric Anomaly) occurred on April 21, and a strong positive anomaly was recorded on April 24, 2015. The behavior of VLF-LF waves along NWC-Bishkek and JJY-Varanasi paths has shown abnormal behavior during April 21–23, several days before the first, stronger earthquake. Our continuous satellite OLR analysis revealed this new strong anomaly on May 3, which was why we anticipated another major event in the area. On May 12, 2015, an M7.3 earthquake occurred. Our results show coherence between the appearance of these pre-earthquake transient’s effects in the atmosphere and ionosphere (with a short time-lag, from hours up to a few days) and the occurrence of the 2015 M7.8 and M7.3 events. The spatial characteristics of the pre-earthquake anomalies were associated with a large area but inside the preparation region estimated by Dobrovolsky-Bowman. The pre-earthquake nature of the signals in the atmosphere and ionosphere was revealed by simultaneous analysis of satellite, GPS/TEC, and VLF/LF and suggest that they follow a general temporal-spatial evolution pattern that has been seen in other large earthquakes worldwide