5,131 research outputs found
Existence of periodic solutions for the Lotka-Volterra type systems
In this paper we prove the existence of non-stationary periodic solutions of
delay Lotka-Volterra equations. In the proofs we use the degree for
-equivariant maps
Non-Gaussianity analysis of GW background made by short-duration burst signals
We study an observational method to analyze non-Gaussianity of a
gravitational wave (GW) background made by superposition of weak burst signals.
The proposed method is based on fourth-order correlations of data from four
detectors, and might be useful to discriminate the origin of a GW background.
With a formulation newly developed to discuss geometrical aspects of the
correlations, it is found that the method provides us with linear combinations
of two interesting parameters, I_2 and V_2 defined by the Stokes parameters of
individual GW burst signals. We also evaluate sensitivities of specific
detector networks to these parameters.Comment: 18 pages, to appear in PR
Prospects for direct detection of circular polarization of gravitational-wave background
We discussed prospects for directly detecting circular polarization signal of
gravitational wave background. We found it is generally difficult to probe the
monopole mode of the signal due to broad directivity of gravitational wave
detectors. But the dipole (l=1) and octupole (l=3) modes of the signal can be
measured in a simple manner by combining outputs of two unaligned detectors,
and we can dig them deeply under confusion and detector noises. Around f~0.1mHz
LISA will provide ideal data streams to detect these anisotropic components
whose magnitudes are as small as ~1 percent of the detector noise level in
terms of the non-dimensional energy density \Omega_{GW}(f).Comment: 5 pages, 1 figure, PRL in pres
Synchrotron Radiation from the Galactic Center in Decaying Dark Matter Scenario
We discuss the synchrotron radiation flux from the Galactic center in
unstable dark matter scenario. Motivated by the anomalous excess of the
positron fraction recently reported by the PAMELA collaboration, we consider
the case that the dark matter particle is unstable (and long-lived), and that
energetic electron and positron are produced by the decay of dark matter. Then,
the emitted electron and positron becomes the source of the synchrotron
radiation. We calculate the synchrotron radiation flux for models of decaying
dark matter, which can explain the PAMELA positron excess. Taking the lifetime
of the dark matter of O(10^26 sec), which is the suggested value to explain the
PAMELA anomaly, the synchrotron radiation flux is found to be O(1 kJy/str) or
smaller, depending on the particle-physics and cosmological parameters.Comment: 20 pages, 6 figure
Non-LTE treatment of molecules in the photospheres of cool stars
We present a technique to treat systems with very many levels, like
molecules, in non-LTE. This method is based on a superlevel formalism coupled
with rate operator splitting. Superlevels consist of many individual levels
that are assumed to be in LTE relative to each other. The usage of superlevels
reduces the dimensionality of the rate equations dramatically and, thereby,
makes the problem computationally more easily treatable. Our superlevel
formalism retains maximum accuracy by using direct opacity sampling (dOS) when
calculating the radiative transitions and the opacities. We developed this
method in order to treat molecules in cool dwarf model calculations in non-LTE.
Cool dwarfs have low electron densities and a radiation field that is far from
a black body radiation field, both properties may invalidate the conditions for
the common LTE approximation. Therefore, the most important opacity sources,
the molecules, need to be treated in non-LTE. As a case study we applied our
method to carbon monoxide. We find that our method gives accurate results since
the conditions for the superlevel method are very well met for molecules. Due
to very high collisional cross sections with hydrogen, and the high densities
of H_2 the population of CO itself shows no significant deviation from LTE.Comment: AASTeX v50, 35 pages including 12 figures, accepted by Ap
Locally continuously perfect groups of homeomorphisms
The notion of a locally continuously perfect group is introduced and studied.
This notion generalizes locally smoothly perfect groups introduced by Haller
and Teichmann. Next, we prove that the path connected identity component of the
group of all homeomorphisms of a manifold is locally continuously perfect. The
case of equivariant homeomorphism group and other examples are also considered.Comment: 14 page
A survey of backward proton and pion production in p+C interactions at beam momenta from 1 to 400 GeV/c
New data on proton and pion production in p+C interactions from the CERN PS
and SPS accelerators are used in conjunction with other available data sets to
perform a comprehensive survey of backward hadronic cross sections. This survey
covers the complete backward hemisphere in the range of lab angles from 10 to
180 degrees, from 0.2 to 1.4 GeV/c in lab momentum and from 1 to 400 GeV/c in
projectile momentum. Using the constraints of continuity and smoothness of the
angular, momentum and energy dependences a consistent description of the
inclusive cross sections is established which allows the control of the
internal consistency of the nineteen available data sets.Comment: 52 pages 47 figure
Polarization in the prompt emission of gamma-ray bursts and their afterglows
Synchrotron is considered the dominant emission mechanism in the production
of gamma-ray burst photons in the prompt as well as in the afterglow phase.
Polarization is a characteristic feature of synchrotron and its study can
reveal a wealth of information on the properties of the magnetic field and of
the energy distribution in gamma-ray burst jets. In this paper I will review
the theory and observations of gamma-ray bursts polarization. While the theory
is well established, observations have prove difficult to perform, due to the
weakness of the signal. The discriminating power of polarization observations,
however, cannot be overestimated.Comment: 16 pages, 9 figures, accepted for publication in the New Journal of
Physics focus issue on Gamma Ray Burst
- …