13 research outputs found

    Skeletal muscle and the maintenance of vitamin d status

    Get PDF
    Β© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Vitamin D, unlike the micronutrients, vitamins A, E, and K, is largely obtained not from food, but by the action of solar ultraviolet (UV) light on its precursor, 7-dehydrocholesterol, in skin. With the decline in UV light intensity in winter, most skin production of vitamin D occurs in summer. Since no defined storage organ or tissue has been found for vitamin D, it has been assumed that an adequate vitamin D status in winter can only be maintained by oral supplementation. Skeletal muscle cells have now been shown to incorporate the vitamin D-binding protein (DBP) from blood into the cell cytoplasm where it binds to cytoplasmic actin. This intracellular DBP provides an array of specific binding sites for 25-hydroxyvitamin D (25(OH)D), which diffuses into the cell from the extracellular fluid. When intracellular DBP undergoes proteolytic breakdown, the bound 25(OH)D is then released and diffuses back into the blood. This uptake and release of 25(OH)D by muscle accounts for the very long half-life of this metabolite in the circulation. Since 25(OH)D concentration in the blood declines in winter, its cycling in and out of muscle cells appears to be upregulated. Parathyroid hormone is the most likely factor enhancing the repeated cycling of 25(OH)D between skeletal muscle and blood. This mechanism appears to have evolved to maintain an adequate vitamin D status in winter

    The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin

    No full text
    Haptoglobin (Hp) is an acidic glycoprotein present in most body fluids of humans and other mammals. Although the functions of Hp are not yet fully understood, the available evidence indicates that it is likely to play an important role in suppressing inflammatory responses. Some earlier work suggested that Hp might be a newly identified member of a small group of extracellular chaperones found at significant levels in human body fluids. Previously, the only well-characterized member of this group was clusterin, which shares functional similarities with the small heat-shock proteins. We report here that Hp specifically inhibited the precipitation of a variety of proteins induced by either heat or oxidation, including proteins in unfractionated human serum. We also show that, like clusterin, Hp (i) inhibits the precipitation of stressed proteins by forming solubilized high molecular weight complexes with them, (ii) cannot protect enzymes from heat-induced loss of function, and (iii) lacks ATPase activity and the ability to independently refold proteins following stresses. Furthermore, we show that Hp has maximum chaperone activity at mildly alkaline pH and, unlike clusterin, does not undergo significant changes in oligomerization state coincident with pH-induced changes in chaperone activity. Our results raise the possibility that Hp may exert an anti-inflammatory action in vivo by inhibiting the inappropriate self-association of β€œdamaged” (misfolded) extracellular proteins

    Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state

    No full text
    We recently reported that the ubiquitous, secreted protein clusterin has chaperone activity in vitro [Humphreys et al. (1999) J. Biol. Chem. 274, 6875βˆ’6881]. In this study, we demonstrate that clusterin (i) inhibits stress-induced precipitation of a very broad range of structurally divergent protein substrates, (ii) binds irreversibly via an ATP-independent mechanism to stressed proteins to form solubilized high molecular weight complexes, (iii) lacks detectable ATPase activity, (iv) when acting alone, does not effect refolding of stressed proteins in vitro, and (v) stabilizes stressed proteins in a state competent for refolding by heat shock protein 70 (HSP70). Furthermore, we show that, at physiological levels, clusterin inhibits stress-induced precipitation of proteins in undiluted human serum. Clusterin represents the first identified secreted mammalian chaperone. However, reports from others suggest that, at least under stress conditions, clusterin may be retained within cells to exert a protective effect. Regardless of the topological site(s) of action, the demonstration that clusterin can stabilize stressed proteins in a refolding-competent state suggests that, during stresses, the action of clusterin may inhibit rapid and irreversible protein precipitation and produce a reservoir of inactive but stabilized molecules from which other refolding chaperones can subsequently salvage functional proteins

    The mTORC2 Regulator Homer1 Modulates Protein Levels and Sub-Cellular Localization of the CaSR in Osteoblast-Lineage Cells

    No full text
    We recently found that, in human osteoblasts, Homer1 complexes to Calcium-sensing receptor (CaSR) and mediates AKT initiation via mechanistic target of rapamycin complex (mTOR) complex 2 (mTORC2) leading to beneficial effects in osteoblasts including Ξ²-catenin stabilization and mTOR complex 1 (mTORC1) activation. Herein we further investigated the relationship between Homer1 and CaSR and demonstrate a link between the protein levels of CaSR and Homer1 in human osteoblasts in primary culture. Thus, when siRNA was used to suppress the CaSR, we observed upregulated Homer1 levels, and when siRNA was used to suppress Homer1 we observed downregulated CaSR protein levels using immunofluorescence staining of cultured osteoblasts as well as Western blot analyses of cell protein extracts. This finding was confirmed in vivo as the bone cells from osteoblast specific CaSRβˆ’/βˆ’ mice showed increased Homer1 expression compared to wild-type (wt). CaSR and Homer1 protein were both expressed in osteocytes embedded in the long bones of wt mice, and immunofluorescent studies of these cells revealed that Homer1 protein sub-cellular localization was markedly altered in the osteocytes of CaSRβˆ’/βˆ’ mice compared to wt. The study identifies additional roles for Homer1 in the control of the protein level and subcellular localization of CaSR in cells of the osteoblast lineage, in addition to its established role of mTORC2 activation downstream of the receptor

    Skeletal Muscle and the Maintenance of Vitamin D Status

    No full text
    Vitamin D, unlike the micronutrients, vitamins A, E, and K, is largely obtained not from food, but by the action of solar ultraviolet (UV) light on its precursor, 7-dehydrocholesterol, in skin. With the decline in UV light intensity in winter, most skin production of vitamin D occurs in summer. Since no defined storage organ or tissue has been found for vitamin D, it has been assumed that an adequate vitamin D status in winter can only be maintained by oral supplementation. Skeletal muscle cells have now been shown to incorporate the vitamin D-binding protein (DBP) from blood into the cell cytoplasm where it binds to cytoplasmic actin. This intracellular DBP provides an array of specific binding sites for 25-hydroxyvitamin D (25(OH)D), which diffuses into the cell from the extracellular fluid. When intracellular DBP undergoes proteolytic breakdown, the bound 25(OH)D is then released and diffuses back into the blood. This uptake and release of 25(OH)D by muscle accounts for the very long half-life of this metabolite in the circulation. Since 25(OH)D concentration in the blood declines in winter, its cycling in and out of muscle cells appears to be upregulated. Parathyroid hormone is the most likely factor enhancing the repeated cycling of 25(OH)D between skeletal muscle and blood. This mechanism appears to have evolved to maintain an adequate vitamin D status in winter

    Vitamin D and Death by Sunshine

    Get PDF
    Exposure to sunlight is the major cause of skin cancer. Ultraviolet radiation (UV) from the sun causes damage to DNA by direct absorption and can cause skin cell death. UV also causes production of reactive oxygen species that may interact with DNA to indirectly cause oxidative DNA damage. UV increases accumulation of p53 in skin cells, which upregulates repair genes but promotes death of irreparably damaged cells. A benefit of sunlight is vitamin D, which is formed following exposure of 7-dehydrocholesterol in skin cells to UV. The relatively inert vitamin D is metabolized to various biologically active compounds, including 1,25-dihydroxyvitamin D3. Therapeutic use of vitamin D compounds has proven beneficial in several cancer types, but more recently these compounds have been shown to prevent UV-induced cell death and DNA damage in human skin cells. Here, we discuss the effects of vitamin D compounds in skin cells that have been exposed to UV. Specifically, we examine the various signaling pathways involved in the vitamin D-induced protection of skin cells from UV

    Distinct Effects of a High Fat Diet on Bone in Skeletally Mature and Developing Male C57BL/6J Mice

    Get PDF
    Increased risks of skeletal fractures are common in patients with impaired glucose handling and type 2 diabetes mellitus (T2DM). The pathogenesis of skeletal fragility in these patients remains ill-defined as patients present with normal to high bone mineral density. With increasing cases of glucose intolerance and T2DM it is imperative that we develop an accurate rodent model for further investigation. We hypothesized that a high fat diet (60%) administered to developing male C57BL/6J mice that had not reached skeletal maturity would over represent bone microarchitectural implications, and that skeletally mature mice would better represent adult-onset glucose intolerance and the pre-diabetes phenotype. Two groups of developing (8 week) and mature (12 week) male C57BL/6J mice were placed onto either a normal chow (NC) or high fat diet (HFD) for 10 weeks. Oral glucose tolerance tests were performed throughout the study period. Long bones were excised and analysed for ex vivo biomechanical testing, micro-computed tomography, 2D histomorphometry and gene/protein expression analyses. The HFD increased fasting blood glucose and significantly reduced glucose tolerance in both age groups by week 7 of the diets. The HFD reduced biomechanical strength, both cortical and trabecular indices in the developing mice, but only affected cortical outcomes in the mature mice. Similar results were reflected in the 2D histomorphometry. Tibial gene expression revealed decreased bone formation in the HFD mice of both age groups, i.e., decreased osteocalcin expression and increased sclerostin RNA expression. In the mature mice only, while the HFD led to a non-significant reduction in runt-related transcription factor 2 (Runx2) RNA expression, this decrease became significant at the protein level in the femora. Our mature HFD mouse model more accurately represents late-onset impaired glucose tolerance/pre-T2DM cases in humans and can be used to uncover potential insights into reduced bone formation as a mechanism of skeletal fragility in these patients

    Sex Differences in Photoprotective Responses to 1,25-Dihydroxyvitamin D3 in Mice Are Modulated by the Estrogen Receptor-Ξ²

    No full text
    Susceptibility to photoimmune suppression and photocarcinogenesis is greater in male than in female humans and mice and is exacerbated in female estrogen receptor-beta knockout (ER-Ξ²βˆ’/βˆ’) mice. We previously reported that the active vitamin D hormone, 1,25-dihydroxyvitamin D3 (1,25(OH)2D), applied topically protects against the ultraviolet radiation (UV) induction of cutaneous cyclobutane pyrimidine dimers (CPDs) and the suppression of contact hypersensitivity (CHS) in female mice. Here, we compare these responses in female versus male Skh:hr1 mice, in ER-Ξ²βˆ’/βˆ’/βˆ’βˆ’ versus wild-type C57BL/6 mice, and in female ER-blockaded Skh:hr1 mice. The induction of CPDs was significantly greater in male than female Skh:hr1 mice and was more effectively reduced by 1,25(OH)2D in female Skh:hr1 and C57BL/6 mice than in male Skh:hr1 or ER-Ξ²βˆ’/βˆ’ mice, respectively. This correlated with the reduced sunburn inflammation due to 1,25(OH)2D in female but not male Skh:hr1 mice. Furthermore, although 1,25(OH)2D alone dose-dependently suppressed basal CHS responses in male Skh:hr1 and ER-Ξ²βˆ’/βˆ’ mice, UV-induced immunosuppression was universally observed. In female Skh:hr1 and C57BL/6 mice, the immunosuppression was decreased by 1,25(OH)2D dose-dependently, but not in male Skh:hr1, ER-Ξ²βˆ’/βˆ’, or ER-blockaded mice. These results reveal a sex bias in genetic, inflammatory, and immune photoprotection by 1,25(OH)2D favoring female mice that is dependent on the presence of ER-Ξ²
    corecore