4 research outputs found

    Effect of dexamethasone treatment on the expression and function of transport proteins in sandwich-cultured rat hepatocytes

    No full text
    Dexamethasone (DEX) is a well established inducer of CYP3A. These studies examined the influence of DEX treatment on transport protein expression and function in sandwich-cultured (SC) rat hepatocytes. Freshly isolated hepatocytes were cultured between two layers of gelled collagen and maintained in Dulbecco's modified Eagle's medium supplemented with DEX (0.1 microM, 0-48 h and 0.1-100 microM, 48-96 h). The expression of sinusoidal [(organic anion transporting polypeptide 1a1 (Oatp1a1), Oatp1a4, multidrug resistance-associated protein 3 (Mrp3), and Na(+)-dependent taurocholate cotransporting polypeptide (Ntcp)] and canalicular [bile salt export pump (Bsep), multidrug resistance protein 1a/b (Mdr1a/b), and Mrp2] transport proteins was determined by Western blot analysis. The accumulation and biliary excretion index (BEI; percentage of accumulated substrate in canalicular networks) of the probe substrates taurocholate (TC; 1 microM, 10 min), rhodamine 123 (Rh123; 10 microM, 30 min), and carboxy-2',7'-dichlorofluorescein (CDF; 10 microM, 10 min) were employed as measures of canalicular transport protein function in SC rat hepatocytes. DEX treatment increased CYP3A1/2, Oatp1a4, and Mrp2 expression, decreased the expression of Ntcp, and did not seem to alter the expression of Oatp1a1, Mrp3, Mdr1a/b, or Bsep. The BEI of CDF, an Mrp2 substrate, increased from 18 to 37% after DEX treatment (100 microM). The accumulation of TC, an Ntcp substrate, was reduced (>50% of control), whereas the BEI of TC, also a Bsep substrate, was unchanged. Treatment of SC rat hepatocytes with DEX resulted in alterations in the expression of CYP3A1/2 and some hepatic transport proteins. Modest alterations in hepatic transport protein function were consistent with changes in protein expression

    P-glycoprotein expression, localization, and function in sandwich-cultured primary rat and human hepatocytes : relevance to the hepatobiliary disposition of a model opioid peptide

    No full text
    PURPOSE: The isolation of hepatocytes from intact liver involves collagenase digestion of the tissue, resulting in loss of cell polarization and functional vectorial excretion. These studies examined repolarization, localization of P-glycoprotein (P-gp) to the canalicular domain of the hepatocyte, and re-establishment of vectorial transport in sandwich-cultured (SC) rat and human primary hepatocytes. METHODS: Protein localization and expression were determined in SC hepatocytes by confocal microscopy and Western blotting, respectively. Transporter function was evaluated by measuring [D-penicillamine2,5]enkephalin (3H-DPDPE) and 5 (and 6)-carboxy-2',7'-dichlorofluorescein (CDF) biliary excretion in SC hepatocytes. RESULTS: P-gp and the canalicular marker protein dipeptidyl peptidase IV (DPPIV) co-localized by Day 3 and Day 6 in SC rat hepatocytes and SC human hepatocytes, respectively, consistent with canalicular network formation visualized by light microscopy. Co-localization of multidrug resistance associated protein 2 (MRP2) and P-gp in SC human hepatocytes was observed on Day 6 in culture. Expression levels of P-gp increased slightly in both species over days in culture; similar expression was observed for MRP2 in SC human hepatocytes. Oatp1a1 expression in SC rat hepatocytes was maintained over days in culture, whereas Oatp1a4 expression decreased. OATP1B1 expression decreased slightly on Day 3 in SC human hepatocytes. OATP1B3 expression was constant in SC human hepatocytes. In vitro biliary excretion of the opioid peptide 3H-DPDPE correlated with the proper localization of canalicular proteins in both species. Excretion of CDF in SC human hepatocytes confirmed network formation and MRP2 function. CONCLUSIONS: These studies indicate that SC hepatocytes repolarize and traffic functional canalicular transport proteins to the appropriate cellular domain
    corecore