156 research outputs found

    Emotional Qualities of VR Space

    Full text link
    The emotional response a person has to a living space is predominantly affected by light, color and texture as space-making elements. In order to verify whether this phenomenon could be replicated in a simulated environment, we conducted a user study in a six-sided projected immersive display that utilized equivalent design attributes of brightness, color and texture in order to assess to which extent the emotional response in a simulated environment is affected by the same parameters affecting real environments. Since emotional response depends upon the context, we evaluated the emotional responses of two groups of users: inactive (passive) and active (performing a typical daily activity). The results from the perceptual study generated data from which design principles for a virtual living space are articulated. Such a space, as an alternative to expensive built dwellings, could potentially support new, minimalist lifestyles of occupants, defined as the neo-nomads, aligned with their work experience in the digital domain through the generation of emotional experiences of spaces. Data from the experiments confirmed the hypothesis that perceivable emotional aspects of real-world spaces could be successfully generated through simulation of design attributes in the virtual space. The subjective response to the virtual space was consistent with corresponding responses from real-world color and brightness emotional perception. Our data could serve the virtual reality (VR) community in its attempt to conceive of further applications of virtual spaces for well-defined activities.Comment: 12 figure

    RecolorCloud: A Point Cloud Tool for Recoloring, Segmentation, and Conversion

    Full text link
    Point clouds are a 3D space representation of an environment that was recorded with a high precision laser scanner. These scanners can suffer from environmental interference such as surface shading, texturing, and reflections. Because of this, point clouds may be contaminated with fake or incorrect colors. Current open source or proprietary tools offer limited or no access to correcting these visual errors automatically. RecolorCloud is a tool developed to resolve these color conflicts by utilizing automated color recoloring. We offer the ability to deleting or recoloring outlier points automatically with users only needing to specify bounding box regions to effect colors. Results show a vast improvement of the photo-realistic quality of large point clouds. Additionally, users can quickly recolor a point cloud with set semantic segmentation colors.Comment: 6 Pages, 9 figures, 1 table, To be submitted to the ACM MMSys 2024 Conferenc

    The Effects of Object Shape, Fidelity, Color, and Luminance on Depth Perception in Handheld Mobile Augmented Reality

    Full text link
    Depth perception of objects can greatly affect a user's experience of an augmented reality (AR) application. Many AR applications require depth matching of real and virtual objects and have the possibility to be influenced by depth cues. Color and luminance are depth cues that have been traditionally studied in two-dimensional (2D) objects. However, there is little research investigating how the properties of three-dimensional (3D) virtual objects interact with color and luminance to affect depth perception, despite the substantial use of 3D objects in visual applications. In this paper, we present the results of a paired comparison experiment that investigates the effects of object shape, fidelity, color, and luminance on depth perception of 3D objects in handheld mobile AR. The results of our study indicate that bright colors are perceived as nearer than dark colors for a high-fidelity, simple 3D object, regardless of hue. Additionally, bright red is perceived as nearer than any other color. These effects were not observed for a low-fidelity version of the simple object or for a more-complex 3D object. High-fidelity objects had more perceptual differences than low-fidelity objects, indicating that fidelity interacts with color and luminance to affect depth perception. These findings reveal how the properties of 3D models influence the effects of color and luminance on depth perception in handheld mobile AR and can help developers select colors for their applications.Comment: 9 pages, In proceedings of IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 202

    Gradient Descent with Linearly Correlated Noise: Theory and Applications to Differential Privacy

    Full text link
    We study gradient descent under linearly correlated noise. Our work is motivated by recent practical methods for optimization with differential privacy (DP), such as DP-FTRL, which achieve strong performance in settings where privacy amplification techniques are infeasible (such as in federated learning). These methods inject privacy noise through a matrix factorization mechanism, making the noise linearly correlated over iterations. We propose a simplified setting that distills key facets of these methods and isolates the impact of linearly correlated noise. We analyze the behavior of gradient descent in this setting, for both convex and non-convex functions. Our analysis is demonstrably tighter than prior work and recovers multiple important special cases exactly (including anticorrelated perturbed gradient descent). We use our results to develop new, effective matrix factorizations for differentially private optimization, and highlight the benefits of these factorizations theoretically and empirically

    Increasing the Precision of Distant Pointing for Large High-Resolution Displays

    Get PDF
    Distant pointing at large displays allows rapid cursor movements, but can be problematic when high levels of precision are needed, due to natural hand tremor and track-ing jitter. We present two ray-casting-based interaction techniques for large high-resolution displays – Absolute and Relative Mapping (ARM) Ray-casting and Zooming for Enhanced Large Display Acuity (ZELDA) – that ad-dress this precision problem. ZELDA enhances precision by providing a zoom window, which increases target sizes resulting in greater precision and visual acuity. ARM Ray-casting increases user control over the cursor position by allowing the user to activate and deactivate relative map-ping as the need for precise manipulation arises. The results of an empirical study show that both approaches improve performance on high-precision tasks when compared to basic ray-casting. In realistic use, however, performance of the techniques is highly dependent on user strategy

    VALID: A perceptually validated Virtual Avatar Library for Inclusion and Diversity

    Full text link
    As consumer adoption of immersive technologies grows, virtual avatars will play a prominent role in the future of social computing. However, as people begin to interact more frequently through virtual avatars, it is important to ensure that the research community has validated tools to evaluate the effects and consequences of such technologies. We present the first iteration of a new, freely available 3D avatar library called the Virtual Avatar Library for Inclusion and Diversity (VALID), which includes 210 fully rigged avatars with a focus on advancing racial diversity and inclusion. We present a detailed process for creating, iterating, and validating avatars of diversity. Through a large online study (n=132) with participants from 33 countries, we provide statistically validated labels for each avatar's perceived race and gender. Through our validation study, we also advance knowledge pertaining to the perception of an avatar's race. In particular, we found that avatars of some races were more accurately identified by participants of the same race

    (Amplified) Banded Matrix Factorization: A unified approach to private training

    Full text link
    Matrix factorization (MF) mechanisms for differential privacy (DP) have substantially improved the state-of-the-art in privacy-utility-computation tradeoffs for ML applications in a variety of scenarios, but in both the centralized and federated settings there remain instances where either MF cannot be easily applied, or other algorithms provide better tradeoffs (typically, as ϵ\epsilon becomes small). In this work, we show how MF can subsume prior state-of-the-art algorithms in both federated and centralized training settings, across all privacy budgets. The key technique throughout is the construction of MF mechanisms with banded matrices (lower-triangular matrices with at most b^\hat{b} nonzero bands including the main diagonal). For cross-device federated learning (FL), this enables multiple-participations with a relaxed device participation schema compatible with practical FL infrastructure (as demonstrated by a production deployment). In the centralized setting, we prove that banded matrices enjoy the same privacy amplification results as the ubiquitous DP-SGD algorithm, but can provide strictly better performance in most scenarios -- this lets us always at least match DP-SGD, and often outperform it.Comment: 34 pages, 13 figure

    VALID: a perceptually validated Virtual Avatar Library for Inclusion and Diversity

    Get PDF
    As consumer adoption of immersive technologies grows, virtual avatars will play a prominent role in the future of social computing. However, as people begin to interact more frequently through virtual avatars, it is important to ensure that the research community has validated tools to evaluate the effects and consequences of such technologies. We present the first iteration of a new, freely available 3D avatar library called the Virtual Avatar Library for Inclusion and Diversity (VALID), which includes 210 fully rigged avatars with a focus on advancing racial diversity and inclusion. We also provide a detailed process for creating, iterating, and validating avatars of diversity. Through a large online study (n = 132) with participants from 33 countries, we provide statistically validated labels for each avatar’s perceived race and gender. Through our validation study, we also advance knowledge pertaining to the perception of an avatar’s race. In particular, we found that avatars of some races were more accurately identified by participants of the same race
    • …
    corecore