82 research outputs found

    Can changing the timing of outdoor air intake reduce indoor concentrations of traffic-related pollutants in schools?

    Get PDF
    Traffic emissions have been associated with a wide range of adverse health effects. Many schools are situated close to major roads, and as children spend much of their day in school, methods to reduce traffic-related air pollutant concentrations in the school environment are warranted. One promising method to reduce pollutant concentrations in schools is to alter the timing of the ventilation so that high ventilation time periods do not correspond to rush hour traffic. Health Canada, in collaboration with the Ottawa-Carleton District School Board, tested the effect of this action by collecting traffic-related air pollution data from four schools in Ottawa, Canada, during October and November 2013. A baseline and intervention period was assessed in each school. There were statistically significant (P \u3c 0.05) reductions in concentrations of most of the pollutants measured at the two late-start (9 AM start) schools, after adjusting for outdoor concentrations and the absolute indoor–outdoor temperature difference. The intervention at the early-start (8 AM start) schools did not have significant reductions in pollutant concentrations. Based on these findings, changing the timing of the ventilation may be a cost-effective mechanism of reducing traffic-related pollutants in late-start schools located near major roads. © 2015 Her Majesty the Queen in Right of Canada. Indoor Air published by John Wiley & Sons Ltd. Reproduced with the permission of the Minister of Health Canada

    Impacts of Subway System Modifications on Air Quality in Subway Platforms and Trains.

    Get PDF
    Subway PM₂.₅ can be substantially sourced from the operation of the system itself. Improvements in subway air quality may be possible by examining the potential to reduce these emissions. To this end, PM₂.₅ was measured on the trains and station platforms of the Toronto subway system. A comparison with previously published data for this system reveals significant changes in below ground platform PM₂.₅. A reduction of nearly one-third (ratio (95% CI): 0.69 (0.63, 0.75)) in PM₂.₅ from 2011 to 2018 appears to have resulted from a complete modernization of the rolling stock on one subway line. In contrast, below ground platform PM₂.₅ for another line increased by a factor of 1.48 (95% CI; 1.42, 1.56). This increase may be related to an increase in emergency brake applications, the resolution of which coincided with a large decrease in PM₂.₅ concentrations on that line. Finally, platform PM₂.₅ in two newly opened stations attained, within one year of operation, typical concentrations of the neighboring platforms installed in 1963. Combined, these findings suggest that the production of platform PM₂.₅ is localized and hence largely freshly emitted. Further, PM₂.₅ changed across this subway system due to changes in its operation and rolling stock. Thus, similar interventions applied intentionally may prove to be equally effective in reducing PM₂.₅. Moreover, establishing a network of platform PM₂.₅ monitors is recommended to monitor ongoing improvements and identify impacts of future system changes on subway air quality. This would result in a better understanding of the relationship between the operations and air quality of subways

    Can changing the timing of outdoor air intake reduce indoor concentrations of traffic-related pollutants in schools?

    Get PDF
    Traffic emissions have been associated with a wide range of adverse health effects. Many schools are situated close to major roads, and as children spend much of their day in school, methods to reduce traffic‐related air pollutant concentrations in the school environment are warranted. One promising method to reduce pollutant concentrations in schools is to alter the timing of the ventilation so that high ventilation time periods do not correspond to rush hour traffic. Health Canada, in collaboration with the Ottawa‐Carleton District School Board, tested the effect of this action by collecting traffic‐related air pollution data from four schools in Ottawa, Canada, during October and November 2013. A baseline and intervention period was assessed in each school. There were statistically significant (P < 0.05) reductions in concentrations of most of the pollutants measured at the two late‐start (9 AM start) schools, after adjusting for outdoor concentrations and the absolute indoor–outdoor temperature difference. The intervention at the early‐start (8 AM start) schools did not have significant reductions in pollutant concentrations. Based on these findings, changing the timing of the ventilation may be a cost‐effective mechanism of reducing traffic‐related pollutants in late‐start schools located near major roads

    Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms

    Get PDF

    Intraurban concentrations, spatial variability and correlation of ambient polycyclic aromatic hydrocarbons (PAH) and PM2.5

    No full text
    To investigate the intraurban spatial variability of air toxics associated with respirable particulate matter (PM), ambient PM2.5 and 16 polycyclic aromatic hydrocarbons (PAH) species (vapour phase plus 2.5 μm particle phase) were sampled over a dense network of sites in Hamilton, Ontario, Canada in June/July 2009 and December 2009. PM2.5 levels ranged from 2.46 to 11.0 μg m−3 in the summer campaign and 6.52 to 13.4 μg m−3 in the winter campaign. Total sampled PAH (Σ16PAH) levels ranged from 10.2 to 83.7 ng m−3 in the summer campaign and 8.31 to 52.1 ng m−3 in the winter campaign. Ambient PM2.5 and PAH concentrations were greater below the city's escarpment with a below/above escarpment difference in concentration much greater for PAH than for PM2.5 in both summer and winter sampling campaigns. Elevated levels of both pollutants were observed to occur near or downwind of the central business district and industrialized harbourfront area, suggesting the contribution of local sources. Ambient PAH exhibited a substantially greater degree of intraurban variability than PM2.5 (coefficient of variation approximately three times greater in summer campaign, four times greater in winter campaign) both above and below the escarpment, particularly for heavy MW species found predominantly in the particle phase. Benzo(a)Pyrene-equivalent toxicity (BaP-TEQ) associated with ambient PAH showed a generally similar spatial distribution to Σ16PAH; however, several sites with relatively low Σ16PAH had high BaP-TEQ (enriched in more toxic heavy MW species), indicating potential hotspots for elevated PAH exposures and local source contributions. Co-located field sampling data showed that central site monitoring was a poor proxy for PM2.5 and particularly for PAH and associated toxicity (BaP-TEQ) across the urban centre, underestimating levels at many sites, likely due to the significant number of locally distributed sources and mixed land use. The much greater intraurban variability of PAH relative to PM2.5, particularly for toxic heavy MW species predominantly in particle phase, demonstrated variability in PM2.5 composition and confirmed the importance of the local scale for PAH exposure health risk assessment

    Air pollution and retinal vessel diameter and blood pressure in school-aged children in a region impacted by residential biomass burning

    No full text
    Abstract Little is known about the early-life cardiovascular health impacts of fine particulate air pollution (PM2.5) and oxidant gases. A repeated-measures panel study was used to evaluate associations between outdoor PM2.5 and the combined oxidant capacity of O3 and NO2 (using a redox-weighted average, Ox) and retinal vessel diameter and blood pressure in children living in a region impacted by residential biomass burning. A median of 6 retinal vessel and blood pressure measurements were collected from 64 children (ages 4–12 years), for a total of 344 retinal measurements and 432 blood pressure measurements. Linear mixed-effect models were used to estimate associations between PM2.5 or Ox (same-day, 3-day, 7-day, and 21-day means) and retinal vessel diameter and blood pressure. Interactions between PM2.5 and Ox were also examined. Ox was inversely associated with retinal arteriolar diameter; the strongest association was observed for 7-day mean exposures, where each 10 ppb increase in Ox was associated with a 2.63 μm (95% CI − 4.63, − 0.63) decrease in arteriolar diameter. Moreover, Ox modified associations between PM2.5 and arteriolar diameter, with weak inverse associations observed between PM2.5 and arteriolar diameter only at higher concentrations of Ox. Our results suggest that outdoor air pollution impacts the retinal microvasculature of children and interactions between PM2.5 and Ox may play an important role in determining the magnitude and direction of these associations

    Impact of microenvironments and personal activities on personal PM2.5 exposures among asthmatic children

    No full text
    Personal activity patterns have often been suggested as a source of unexplained variability when comparing personal particulate matter (PM2.5) exposure to modeled data using central site or microenvironmental data. To characterize the effect of personal activity patterns on asthmatic children’s personal PM2.5 exposure, data from the Windsor, Ontario Exposure Assessment Study were analyzed. The children spent on an average 67.1±12.7% (winter) and 72.3±22.6% (summer) of their time indoors at home where they received 51.7±14.8% and 66.3±19.0% of their PM2.5 exposure, respectively. In winter, 17.7±5.9% of their time was spent at school where they received 38.6±11.7% of their PM2.5 exposure. In summer, they spent 10.3±11.8% ‘indoors away from home’, which represented 23.4±18.3% of their PM2.5 exposure. Personal activity codes adapted from those of the National Human Activity Pattern Survey and the Canadian Human Activity Pattern Survey were assigned to the children’s activities. Of the over 100 available activity codes, 19 activities collectively encompassed nearly 95% of their time. Generalized estimating equation (GEE) models found that, while indoors at home, relative to daytime periods when sedentary activities were conducted, several personal activities were associated with significantly elevated personal PM2.5 exposures. Indoor playing represented a mean increase in PM2.5 of 10.1 μg/m3 (95% CI 6.3–13.8) and 11.6 μg/m3 (95% CI 8.1–15.1) in winter and summer, respectively, as estimated by a personal nephelometer
    corecore