12 research outputs found

    Cellular and molecular studies on hippocampal plasticity: region-dependent effects of β-adrenergic signaling and the regulation of AMPA receptor phosphorylation

    No full text
    Synaptic plasticity is an essential mechanism for both the creation of memories and theformation of associations between those memories. A crucial component of learning andmemory is the hippocampus. The works included in this thesis probe the cellular basis oflearning and memory in the hippocampus through two primary means. The first builds uponexisting information highlighting the stark difference in plasticity between the dorsal and ventral poles of the hippocampus along with the preferential influence of neuromodulatorson ventral plasticity. The second examines the importance of phosphorylation-based regulation of the AMPA receptor subunit, GluA1, and how this mediates hippocampal plasticity. Despite similar basal excitatory and inhibitory synaptic transmission between the twopoles, the ventral hippocampus exhibits much weaker long term potentiation (LTP) and complex spiking compared to the dorsal. This deficit was due to a down regulation of the NMDA receptors in the ventral region, which resulted in weaker E-S coupling and EPSP amplification. LTP induction and complex spiking, however, could be rescued with the addition of a β-adrenergic agonist. Additionally, β-adrenergic activation inhibited the small conductance calcium-activated potassium channel, SK, which serves to hyperpolarize the cell and resist NMDA receptor activation. Indeed, pharmacological inhibition of the SK channel enhanced LTP induction, complex spiking, E-S coupling, and EPSP amplification in the ventral hippocampus. The second part of this thesis examined the role of two particular GluA1 phosphorylationsites, S845 and T840, and how their phosphorylation states affect hippocampal plasticity. Wefound that S845 and T840 are regulated by distinct calcium sources and phosphatases and also track synaptic strength in different ways. S845 is persistently dephosphorylated following either depolarization or LTD induction, whereas T840 only remains dephosphorylated after LTD induction. Furthermore, we found inhibitory phospho-site interactions between the two sites, due to their close proximity to one another. We then determined the basal phosphorylation levels of both sites and discovered that S845 phosphorylation levels were so low we could not adequately quantify them while T840 residues were phosphorylated in approximately ~50% of GluA1 subunits. This thesis has served two important roles in the elucidation of plasticity in thehippocampus, as it has i) identified a potent role of noradrenergic signaling in facilitating LTPinduction in the ventral hippocampus and ii) detailed the regulation and prevalence of T840 and S845 in the hippocampus, along with their involvement in plasticity

    Basal levels of AMPA receptor GluA1 subunit phosphorylation at threonine 840 and serine 845 in hippocampal neurons

    No full text
    Dephosphorylation of AMPA receptor (AMPAR) GluA1 subunits at two sites, serine 845 (S845) and threonine 840 (T840), is thought to be involved in NMDA receptor-dependent forms of long-term depression (LTD). Importantly, the notion that dephosphorylation of these sites contributes to LTD assumes that a significant fraction of GluA1 subunits are basally phosphorylated at these sites. To examine this question, we used immunoprecipitation/depletion assays to estimate the proportion of GluA1 subunits basally phosphorylated at S845 and T840. Although dephosphorylation of S845 is thought to have a key role in LTD, our results indicate that few GluA1 subunits in hippocampal neurons are phosphorylated at this site. In contrast, ∼50% of GluA1 subunits are basally phosphorylated at T840, suggesting that dephosphorylation of this site can contribute to the down-regulation of AMPAR-mediated synaptic transmission in LTD

    Inhibitory Interactions between Phosphorylation Sites in the C Terminus of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid-type Glutamate Receptor GluA1 Subunits*

    No full text
    The C terminus of AMPA-type glutamate receptor (AMPAR) GluA1 subunits contains several phosphorylation sites that regulate AMPAR activity and trafficking at excitatory synapses. Although many of these sites have been extensively studied, little is known about the signaling mechanisms regulating GluA1 phosphorylation at Thr-840. Here, we report that neuronal depolarization in hippocampal slices induces a calcium and protein phosphatase 1/2A-dependent dephosphorylation of GluA1 at Thr-840 and a nearby site at Ser-845. Despite these similarities, inhibitors of NMDA-type glutamate receptors and protein phosphatase 2B prevented depolarization-induced Ser-845 dephosphorylation but had no effect on Thr-840 dephosphorylation. Instead, depolarization-induced Thr-840 dephosphorylation was prevented by blocking voltage-gated calcium channels, indicating that distinct Ca(2+) sources converge to regulate GluA1 dephosphorylation at Thr-840 and Ser-845 in separable ways. Results from immunoprecipitation/depletion assays indicate that Thr-840 phosphorylation inhibits protein kinase A (PKA)-mediated increases in Ser-845 phosphorylation. Consistent with this, PKA-mediated increases in AMPAR currents, which are dependent on Ser-845 phosphorylation, were inhibited in HEK-293 cells expressing a Thr-840 phosphomimetic version of GluA1. Conversely, mimicking Ser-845 phosphorylation inhibited protein kinase C phosphorylation of Thr-840 in vitro, and PKA activation inhibited Thr-840 phosphorylation in hippocampal slices. Together, the regulation of Thr-840 and Ser-845 phosphorylation by distinct sources of Ca(2+) influx and the presence of inhibitory interactions between these sites highlight a novel mechanism for conditional regulation of AMPAR phosphorylation and function

    Differential Regulation of NMDA Receptor-Mediated Transmission by SK Channels Underlies Dorsal-Ventral Differences in Dynamics of Schaffer Collateral Synaptic Function

    No full text
    Behavioral, physiological, and anatomical evidence indicates that the dorsal and ventral zones of the hippocampus have distinct roles in cognition. How the unique functions of these zones might depend on differences in synaptic and neuronal function arising from the strikingly different gene expression profiles exhibited by dorsal and ventral CA1 pyramidal cells is unclear. To begin to address this question, we investigated the mechanisms underlying differences in synaptic transmission and plasticity at dorsal and ventral Schaffer collateral (SC) synapses in the mouse hippocampus. We find that, although basal synaptic transmission is similar, SC synapses in the dorsal and ventral hippocampus exhibit markedly different responses to θ frequency patterns of stimulation. In contrast to dorsal hippocampus, θ frequency stimulation fails to elicit postsynaptic complex-spike bursting and does not induce LTP at ventral SC synapses. Moreover, EPSP-spike coupling, a process that strongly influences information transfer at synapses, is weaker in ventral pyramidal cells. Our results indicate that all these differences in postsynaptic function are due to an enhanced activation of SK-type K+ channels that suppresses NMDAR-dependent EPSP amplification at ventral SC synapses. Consistent with this, mRNA levels for the SK3 subunit of SK channels are significantly higher in ventral CA1 pyramidal cells. Together, our findings indicate that a dorsal-ventral difference in SK channel regulation of NMDAR activation has a profound effect on the transmission, processing, and storage of information at SC synapses and thus likely contributes to the distinct roles of the dorsal and ventral hippocampus in different behaviors.SIGNIFICANCE STATEMENT Differences in short- and long-term plasticity at Schaffer collateral (SC) synapses in the dorsal and ventral hippocampus likely contribute importantly to the distinct roles of these regions in cognition and behavior. Although dorsal and ventral CA1 pyramidal cells exhibit markedly different gene expression profiles, how these differences influence plasticity at SC synapses is unclear. Here we report that increased mRNA levels for the SK3 subunit of SK-type K+ channels in ventral pyramidal cells is associated with an enhanced activation of SK channels that strongly suppresses NMDAR activation at ventral SC synapses. This leads to striking differences in multiple aspects of synaptic transmission at dorsal and ventral SC synapses and underlies the reduced ability of ventral SC synapses to undergo LTP

    Differential Regulation of NMDA Receptor-Mediated Transmission by SK Channels Underlies Dorsal-Ventral Differences in Dynamics of Schaffer Collateral Synaptic Function

    No full text
    Behavioral, physiological, and anatomical evidence indicates that the dorsal and ventral zones of the hippocampus have distinct roles in cognition. How the unique functions of these zones might depend on differences in synaptic and neuronal function arising from the strikingly different gene expression profiles exhibited by dorsal and ventral CA1 pyramidal cells is unclear. To begin to address this question, we investigated the mechanisms underlying differences in synaptic transmission and plasticity at dorsal and ventral Schaffer collateral (SC) synapses in the mouse hippocampus. We find that, although basal synaptic transmission is similar, SC synapses in the dorsal and ventral hippocampus exhibit markedly different responses to θ frequency patterns of stimulation. In contrast to dorsal hippocampus, θ frequency stimulation fails to elicit postsynaptic complex-spike bursting and does not induce LTP at ventral SC synapses. Moreover, EPSP-spike coupling, a process that strongly influences information transfer at synapses, is weaker in ventral pyramidal cells. Our results indicate that all these differences in postsynaptic function are due to an enhanced activation of SK-type K(+) channels that suppresses NMDAR-dependent EPSP amplification at ventral SC synapses. Consistent with this, mRNA levels for the SK3 subunit of SK channels are significantly higher in ventral CA1 pyramidal cells. Together, our findings indicate that a dorsal-ventral difference in SK channel regulation of NMDAR activation has a profound effect on the transmission, processing, and storage of information at SC synapses and thus likely contributes to the distinct roles of the dorsal and ventral hippocampus in different behaviors. SIGNIFICANCE STATEMENT Differences in short- and long-term plasticity at Schaffer collateral (SC) synapses in the dorsal and ventral hippocampus likely contribute importantly to the distinct roles of these regions in cognition and behavior. Although dorsal and ventral CA1 pyramidal cells exhibit markedly different gene expression profiles, how these differences influence plasticity at SC synapses is unclear. Here we report that increased mRNA levels for the SK3 subunit of SK-type K(+) channels in ventral pyramidal cells is associated with an enhanced activation of SK channels that strongly suppresses NMDAR activation at ventral SC synapses. This leads to striking differences in multiple aspects of synaptic transmission at dorsal and ventral SC synapses and underlies the reduced ability of ventral SC synapses to undergo LTP

    Functional and phosphoproteomic analysis of β-adrenergic receptor signaling at excitatory synapses in the CA1 region of the ventral hippocampus

    No full text
    Abstract Activation of β-adrenergic receptors (β-ARs) not only enhances learning and memory but also facilitates the induction of long-term potentiation (LTP), a form of synaptic plasticity involved in memory formation. To identify the mechanisms underlying β-AR-dependent forms of LTP we examined the effects of the β-AR agonist isoproterenol on LTP induction at excitatory synapses onto CA1 pyramidal cells in the ventral hippocampus. LTP induction at these synapses is inhibited by activation of SK-type K+ channels, suggesting that β-AR activation might facilitate LTP induction by inhibiting SK channels. However, although the SK channel blocker apamin enhanced LTP induction, it did not fully mimic the effects of isoproterenol. We therefore searched for potential alternative mechanisms using liquid chromatography-tandem mass spectrometry to determine how β-AR activation regulates phosphorylation of postsynaptic density (PSD) proteins. Strikingly, β-AR activation regulated hundreds of phosphorylation sites in PSD proteins that have diverse roles in dendritic spine structure and function. Moreover, within the core scaffold machinery of the PSD, β-AR activation increased phosphorylation at several sites previously shown to be phosphorylated after LTP induction. Together, our results suggest that β-AR activation recruits a diverse set of signaling pathways that likely act in a concerted fashion to regulate LTP induction
    corecore