1,003 research outputs found

    Two Species of Canine Babesia in Australia: Detection and Characterization by PCR

    Get PDF
    The haemoprotozoan Babesia canis has been recognized in Australia for many years, and a second, smaller species has recently been discovered. Amplification and sequencing of a partial region of the 18S small subunit ribosomal RNA (rRNA) gene enabled detection and characterization of the large and small canine babesiae of Australia for the first time. Isolates from northern Australia were genetically characterized to be 99% homologous to Babesia canis vogeli, confirming previous speculation about the subspecies of B. canis endemic to Australia. The partial 18S rRNA gene sequence amplified from isolates obtained in southeastern Australia was genetically identical to Babesia gibsoni, a species not previously known in Australia. The polymerase chain reaction (PCR) used was shown to be specific to Babesia and had a high sensitivity, detecting DNA at a parasitemia of approximately 0.0000027%. This study also reports the first known detection and characterization of B. canis DNA in Rhipicephalus sanguineus ticks using PCR

    Genetic characterization of flea-derived Bartonella species from native animals in Australia suggests host-parasite co-evolution

    Get PDF
    Fleas are important arthropod vectors for a variety of diseases in veterinary and human medicine, and bacteria belonging to the genus Bartonella are among the organisms most commonly transmitted by these ectoparasites. Recently, a number of novel Bartonella species and novel species candidates have been reported in marsupial fleas in Australia. In the present study the genetic diversity of marsupial fleas was investigated; 10 species of fleas were collected from seven different marsupial and placental mammal hosts in Western Australia including woylies (Bettongia penicillata), western barred bandicoots (Perameles bougainville), mardos (Antechinus flavipes), bush rats (Rattus fuscipes), red foxes (Vulpes vulpes), feral cats (Felis catus) and rabbits (Oryctolagus cuniculus). PCR and sequence analysis of the cytochrome oxidase subunit I (COI) and the 18S rRNA genes from these fleas was performed. Concatenated phylogenetic analysis of the COI and 18S rRNA genes revealed a close genetic relationship between marsupial fleas, with Pygiopsylla hilli from woylies, Pygiopsylla tunneyi from western barred bandicoots and Acanthopsylla jordani from mardos, forming a separate cluster from fleas collected from the placental mammals in the same geographical area. The clustering of Bartonella species with their marsupial flea hosts suggests co-evolution of marsupial hosts, marsupial fleas and Bartonella species in Australia

    Molecular and morphological characterization of Echinococcus granulosus of human and animal origin in Iran

    Get PDF
    Iran is an important endemic focus of cystic hydatid disease (CHD) where several species of intermediate host are commonly infected with Echinococcus granulosus. Isolates of E. granulosus were collected from humans and other animals from different geographical areas of Iran and characterized using both DNA (PCR-RFLP of ITS1) and morphological criteria (metacestode rostellar hook dimensions). The sheep and camel strains/genotypes were shown to occur in Iran. The sheep strain was shown to be the most common genotype of E. granulosus affecting sheep, cattle, goats and occasionally camels. The majority of camels were infected with the camel genotype as were 3 of 33 human cases. This is the first time that cases of CHD in humans have been identified in an area where a transmission cycle for the camel genotype exists. In addition, the camel genotype was found to cause infection in both sheep and cattle. Results also demonstrated that both sheep and camel strains can be readily differentiated on the basis of hook morphology alone

    Plausibility functions and exact frequentist inference

    Full text link
    In the frequentist program, inferential methods with exact control on error rates are a primary focus. The standard approach, however, is to rely on asymptotic approximations, which may not be suitable. This paper presents a general framework for the construction of exact frequentist procedures based on plausibility functions. It is shown that the plausibility function-based tests and confidence regions have the desired frequentist properties in finite samples---no large-sample justification needed. An extension of the proposed method is also given for problems involving nuisance parameters. Examples demonstrate that the plausibility function-based method is both exact and efficient in a wide variety of problems.Comment: 21 pages, 5 figures, 3 table

    Detection and phylogenetic characterisation of novel Anaplasma and Ehrlichia species in Amblyomma triguttatum subsp. from four allopatric populations in Australia

    Get PDF
    Anaplasma and Ehrlichia spp. are tick-borne pathogens that can cause severe disease in domestic animals, and several species are responsible for emerging zoonoses in the northern hemisphere. Until recently, the only members of these genera reported in Australia (A. marginale, A. centrale, and A. platys) were introduced from other continents, through the importation of domestic animals and their associated ticks. However, unique Anaplasma and Ehrlichia 16S rRNA gene sequences were recently detected for the first time in native Australian ticks, particularly in Amblyomma triguttatum subsp. ticks from southwest Western Australia (WA). We used molecular techniques to survey Am. triguttatum subsp. ticks from four allopatric populations in southern and western Australia for Anaplasma and Ehrlichia species, and described here the phylogeny of these novel organisms. An A. bovis variant (genotype Y11) was detected in ticks from two study sites; Yanchep National Park (12/280, 4.3%) and Barrow Island (1/69, 1.4%). Phylogenetic analysis of 16S rRNA and groEL gene sequences concluded that A. bovis genotype Y11 is a unique genetic variant, distinct from other A. bovis isolates worldwide. Additionally, a novel Ehrlichia species was detected in Am. triguttatum subsp. from three of the four study sites; Yanchep National Park (18/280, 6.4%), Bungendore Park (8/46, 17.4%), and Innes National Park (9/214, 4.2%), but not from Barrow Island. Phylogenetic analysis of 16S, groEL, gltA, and map1 gene sequences revealed that this Ehrlichia sp. is most closely related to, but clearly distinct from, E. ruminantium and Ehrlichia sp. Panola Mountain. We propose to designate this new species '. Candidatus Ehrlichia occidentalis'. Anaplasma bovis genotype Y11 and 'Candidatus E. occidentalis' are the first Anaplasma and Ehrlichia species to be recorded in native Australian ticks

    A survey of ticks (Acari: Ixodidae) of companion animals in Australia

    Get PDF
    Background: Ticks are among the most important vectors of pathogens affecting companion animals, and also cause health problems such as tick paralysis, anaemia, dermatitis, and secondary infections. Twenty ixodid species have previously been recorded on dogs, cats, and horses in Australia, including Rhipicephalus sanguineus, Ixodes holocyclus and Haemaphysalis longicornis, which transmit tick-borne diseases. A survey of hard ticks (Acari: Ixodidae) was conducted during 2012-2015 to investigate tick species that infest dogs, cats, and horses in Australia. Methods: Individual tick specimens were collected from dogs, cats and horses across Australia and sample collection locations were mapped using QGIS software. Ticks were morphologically examined to determine species, instar and sex. The companion animal owners responded to questionnaires and data collected were summarised with SPSS software. Results: A total of 4765 individual ticks were identified in this study from 7/8 states and territories in Australia. Overall, 220 larvae, 805 nymphs, 1404 males, and 2336 females of 11 tick species were identified from 837 companion animal hosts. One novel host record was obtained during this study for Ixodes myrmecobii, which was found on Felis catus (domestic cat) in the town of Esperance, Western Australia. The most common tick species identified included R. sanguineus on dogs (73 %), I. holocyclus on cats (81 %) and H. longicornis on horses (60 %). Conclusions: This study is the first of its kind to be conducted in Australia and our results contribute to the understanding of the species and distribution of ticks that parasitise dogs, cats, and horses in Australia. Records of R. sanguineus outside of the recorded distribution range emphasise the need for a systematic study of the habitat range of this species. Several incomplete descriptions of ixodid species encountered in this study hindered morphological identification

    Recent insights into the tick microbiome gained through next-generation sequencing

    Get PDF
    The tick microbiome comprises communities of microorganisms, including viruses, bacteria and eukaryotes, and is being elucidated through modern molecular techniques. The advent of next-generation sequencing (NGS) technologies has enabled the genes and genomes within these microbial communities to be explored in a rapid and cost-effective manner. The advantages of using NGS to investigate microbiomes surpass the traditional non-molecular methods that are limited in their sensitivity, and conventional molecular approaches that are limited in their scalability. In recent years the number of studies using NGS to investigate the microbial diversity and composition of ticks has expanded. Here, we provide a review of NGS strategies for tick microbiome studies and discuss the recent findings from tick NGS investigations, including the bacterial diversity and composition, influential factors, and implications of the tick microbiome

    Trypanosomiasis in an Australian little red flying fox (Pteropus scapulatus)

    Get PDF
    Case report An adult female Australian little red flying fox (Pteropus scapulatus) presented with icterus and anaemia. Examination of a blood smear revealed numerous trypanosomes 20.4-30.8 mu m long with tapered ends. Necropsy and histological findings were consistent with trypanosome infection of lymphoid tissue and intravascular haemolysis. Sequence and phylogenetic analysis demonstrated this trypanosome species to be genetically distinct and most similar to Trypanosoma minasense and Trypanosoma rangeli (with a genetic distance of 1% at the 18S rRNA locus for both). Conclusion To the authors' knowledge this is the first report of a trypanosome infection associated with clinical disease in bats

    Identification of novel trypanosome genotypes in native Australian marsupials

    Get PDF
    In the present study, the occurrence and molecular phylogeny of trypanosome parasites were studied in both wild and captive marsupials from Western Australia and Queensland. Blood samples were screened by PCR at the 18S rDNA locus, and the glycosomal glyceraldehyde phosphate dehydrogenase gene. Overall, 5.3% of the blood samples were positive at the 18S rDNA locus. All positives belonged to wild-captured Western Australian individuals, where trypanosome-specific DNA was detected in 9.8% of the screened samples from wild marsupials, in common brushtail possums, and woylies. The detection rate of trypanosome DNA in these two host species was 12.5% and 20%, respectively. Phylogenetic analyses based on two loci, indicated that the possum-derived trypanosome isolates were genetically distinct, and most closely related to the Australian marsupial trypanosomes H25 from a kangaroo, and BRA2 from a bush rat. This is the first study to genetically characterise trypanosome isolates from possums. The analysis of the woylie-derived isolates demonstrated that this marsupial host can harbour multiple genotypes within the same geographical location and furthermore multiple genotypes within the same host, indicative of mixed infections. All the woylie-derived genotypes grouped with trypanosomes found in Australian marsupials, suggesting that they are more likely to belong to an endemic or Australasian trypanosome species. This is the first study to genetically characterise trypanosome isolates from possums (Trichosurus vulpecula). Although the clinical significance of these infections is currently unknown, the identification of these novel sequences may support future investigations on transmission, threats to endangered wildlife, and evolutionary history of the genus Trypanosoma

    Illuminating the bacterial microbiome of Australian ticks with 16S and Rickettsia-specific next-generation sequencing

    Get PDF
    Next-generation sequencing (NGS) studies show that mosquito and tick microbiomes influence the transmission of pathogens, opening new avenues for vector-borne pathogen control. Recent microbiological studies of Australian ticks highlight fundamental knowledge gaps of tick-borne agents. This investigation explored the composition, diversity and prevalence of bacteria in Australian ticks (n = 655) from companion animals (dogs, cats and horses). Bacterial 16S NGS was used to identify most bacterial taxa and a Rickettsia-specific NGS assay was developed to identify Rickettsia species that were indistinguishable at the V1-2 regions of 16S. Sanger sequencing of near full-length 16S was used to confirm whether species detected by 16S NGS were novel. The haemotropic bacterial pathogens Anaplasma platys, Bartonella clarridgeiae, “Candidatus Mycoplasma haematoparvum” and Coxiella burnetii were identified in Rhipicephalus sanguineus (s.l.) from Queensland (QLD), Western Australia, the Northern Territory (NT), and South Australia, Ixodes holocyclus from QLD, Rh. sanguineus (s.l.) from the NT, and I. holocyclus from QLD, respectively. Analysis of the control data showed that cross-talk compromises the detection of rare species as filtering thresholds for less abundant sequences had to be applied to mitigate false positives. A comparison of the taxonomic assignments made with 16S sequence databases revealed inconsistencies. The Rickettsia-specific citrate synthase gene NGS assay enabled the identification of Rickettsia co-infections with potentially novel species and genotypes most similar (97.9–99.1%) to Rickettsia raoultii and Rickettsia gravesii. “Candidatus Rickettsia jingxinensis” was identified for the first time in Australia. Phylogenetic analysis of near full-length 16S sequences confirmed a novel Coxiellaceae genus and species, two novel Francisella species, and two novel Francisella genotypes. Cross-talk raises concerns for the MiSeq platform as a diagnostic tool for clinical samples. This study provides recommendations for adjustments to Illuminaʼs 16S metagenomic sequencing protocol that help track and reduce cross-talk from cross-contamination during library preparation. The inconsistencies in taxonomic assignment emphasise the need for curated and quality-checked sequence databases
    • …
    corecore