792 research outputs found
The Effects of a High Fat Meal on Blood Flow Regulation during Arm Exercise
A diet high in saturated fats results in endothelial dysfunction and can lead to atherosclerosis, a precursor to cardiovascular disease. Exercise training is a potent stimulus though to mitigate the negative effects of a high saturated fat diet; however, it is unclear how high-saturated fat meal (HSFM) consumption impacts blood flow regulation during a single exercise session.
PURPOSE: This study sought to examine the impact of a single HSFM on peripheral vascular function during an acute upper limb exercise bout.
METHODS: Ten young healthy individuals completed two sessions of progressive handgrip exercise. Subjects either consumed a HSFM (0.84 g of fat/kg of body weight) 4 hours prior or remained fasted before the exercise bout. Progressive rhythmic handgrip exercise (6kg, 12kg, 18kg) was performed for 3 minutes per stage at rate of 1 Hz. The brachial artery (BA) diameter and blood velocity was obtained using Doppler Ultrasound (GE Logiq e) and BA blood flow was calculated with these values.
RESULTS: BA blood flow and flow mediated dilation (normalized for shear rate) during the handgrip exercise significant increased from baseline in all workloads, but no differences were revealed in response to the HSFM consumption.
CONCLUSION: Progressive handgrip exercise augmented BA blood flow and flow mediated dilation in both testing days; however, there was no significant differences following the HSFM consumption. This suggests that upper limb blood flow regulation during exercise is unaltered by a high fat meal in young healthy individuals.https://scholarscompass.vcu.edu/gradposters/1060/thumbnail.jp
Genetic testing in dementia
There is growing public awareness and concern regarding dementia risk. In addition, genetic testing is increasingly accessible and is at the point of being integrated into routine clinical practice. As a result, there is a pressing need for treating clinicians to have the appropriate knowledge base to request and consent for diagnostic genetic testing in cognitive clinics. We outline our approach to genetic testing in patients with Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies and vascular cognitive impairment. We discuss when to consider testing, the consenting process, and the interpretation and communication of genetic test results
Clinical considerations in early-onset cerebral amyloid angiopathy
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-beta CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognised and may result from genetic or iatrogenic causes that warrant specific and focussed investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-beta CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-beta CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognised iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease
Assessing Long-Distance Atmospheric Transport of Soilborne Plant Pathogens
Pathogenic fungi are a leading cause of crop disease and primarily spread
through microscopic, durable spores adapted differentially for both persistence
and dispersal. Computational Earth System Models and air pollution models have
been used to simulate atmospheric spore transport for aerial-dispersal-adapted
(airborne) rust diseases, but the importance of atmospheric spore transport for
soil-dispersal-adapted (soilborne) diseases remains unknown. This study adapts
the Community Atmosphere Model, the atmospheric component of the Community
Earth System Model, to simulate the global transport of the plant pathogenic
soilborne fungus Fusarium oxysporum, F. oxy. Our sensitivity study assesses the
model's accuracy in long-distance aerosol transport and the impact of
deposition rate on long-distance spore transport in Summer 2020 during a major
dust transport event from Northern Sub-Saharan Africa to the Caribbean and
southeastern U.S. We find that decreasing wet and dry deposition rates by an
order of magnitude improves representation of long distance, trans-Atlantic
dust transport. Simulations also suggest that a small number of viable spores
can survive trans-Atlantic transport to be deposited in agricultural zones.
This number is dependent on source spore parameterization, which we improved
through a literature search to yield a global map of F. oxy spore distribution
in source agricultural soils. Using this map and aerosol transport modeling, we
show how viable spore numbers in the atmosphere decrease with distance traveled
and offer a novel danger index for viable spore deposition in agricultural
zones
A comparative analysis of the goal orientation and test anxiety of high school students with and without private tutors
The purpose of the study was to find out whether the goal orientation and test anxiety of high school students engaged in shadow education will be different from those whose only source of learning is that of mainstream education. A total of 387 high school students participated in this comparative research. They completed the Patterns of Adaptive Learning Scales and the Test Anxiety Inventory and results show that high school students without exposure to shadow education are more mastery-oriented while those with those with private tutors are more performance-oriented. In terms of test anxiety, it appears that those engaged in shadow education are more anxious about the testing process as compared to those without private tutors. Specifically, significant differences between the two groups were observed in their mastery orientation, level of emotionality and total test anxiety
Improved Functional Outcome After Peripheral Nerve Stimulation of the Impaired Forelimb Post-stroke
Lack of blood flow to the brain, i.e., ischemic stroke, results in loss of nerve cells and therefore loss of function in the effected brain regions. There is no effective treatment to improve lost function except restoring blood flow within the first several hours. Rehabilitation strategies are widely used with limited success. The purpose of this study was to examine the effect of electrical stimulation on the impaired upper extremity to improve functional recovery after stroke. We developed a rodent model using an electrode cuff implant onto a single peripheral nerve (median nerve) of the paretic forelimb and applied daily electrical stimulation. The skilled forelimb reaching test was used to evaluate functional outcome after stroke and electrical stimulation. Anterograde axonal tracing from layer V pyramidal neurons with biotinylated dextran amine was done to evaluate the formation of new neuronal connections from the contralesional cortex to the deafferented spinal cord. Rats receiving electrical stimulation on the median nerve showed significant improvement in the skilled forelimb reaching test in comparison with stroke only and stroke with sham stimulation. Rats that received electrical stimulation also exhibited significant improvement in the latency to initiate adhesive removal from the impaired forelimb, indicating better sensory recovery. Furthermore, axonal tracing analysis showed a significant higher midline fiber crossing index in the cervical spinal cord of rats receiving electrical stimulation. Our results indicate that direct peripheral nerve stimulation leads to improved sensorimotor recovery in the stroke-impaired forelimb, and may be a useful approach to improve post-stroke deficits in human patients
Presymptomatic cortical thinning in familial Alzheimer disease: A longitudinal MRI study.
OBJECTIVE: To identify a cortical signature pattern of cortical thinning in familial Alzheimer disease (FAD) and assess its utility in detecting and tracking presymptomatic neurodegeneration. METHODS: We recruited 43 FAD mutation carriers-36 PSEN1, 7 APP (20 symptomatic, 23 presymptomatic)-and 42 healthy controls to a longitudinal clinical and MRI study. T1-weighted MRI scans were acquired at baseline in all participants; 55 individuals (33 mutation carriers; 22 controls) had multiple (mean 2.9) follow-up scans approximately annually. Cortical thickness was measured using FreeSurfer. A cortical thinning signature was identified from symptomatic FAD participants. We then examined cortical thickness changes in this signature region in presymptomatic carriers and assessed associations with cognitive performance. RESULTS: The cortical signature included 6 regions: entorhinal cortex, inferior parietal cortex, precuneus, superior parietal cortex, superior frontal cortex, and supramarginal gyrus. There were significant differences in mean cortical signature thickness between mutation carriers and controls 3 years before predicted symptom onset. The earliest significant difference in a single region, detectable 4 years preonset, was in the precuneus. Rate of change in cortical thickness became significantly different in the cortical signature at 5 years before predicted onset, and in the precuneus at 8 years preonset. Baseline mean signature thickness predicted rate of subsequent thinning and correlated with presymptomatic cognitive change. CONCLUSIONS: The FAD cortical signature appears to be similar to that described for sporadic AD. All component regions showed significant presymptomatic thinning. A composite signature may provide more robust results than a single region and have utility as an outcome measure in presymptomatic trials
Aβ profiles generated by Alzheimer's disease causing PSEN1 variants determine the pathogenicity of the mutation and predict age at disease onset.
Familial Alzheimer’s disease (FAD), caused by mutations in Presenilin (PSEN1/2) and Amyloid Precursor Protein (APP) genes, is associated with an early age at onset (AAO) of symptoms. AAO is relatively consistent within families and between carriers of the same mutations, but differs markedly between individuals carrying different mutations. Gaining a mechanistic understanding of why certain mutations manifest several decades earlier than others is extremely important in elucidating the foundations of pathogenesis and AAO. Pathogenic mutations affect the protease (PSEN/γ-secretase) and the substrate (APP) that generate amyloid β (Aβ) peptides. Altered Aβ metabolism has long been associated with AD pathogenesis, with absolute or relative increases in Aβ42 levels most commonly implicated in the disease development. However, analyses addressing the relationships between these Aβ42 increments and AAO are inconsistent. Here, we investigated this central aspect of AD pathophysiology via comprehensive analysis of 25 FAD-linked Aβ profiles. Hypothesis- and data-driven approaches demonstrate linear correlations between mutation-driven alterations in Aβ profiles and AAO. In addition, our studies show that the Aβ (37 + 38 + 40) / (42 + 43) ratio offers predictive value in the assessment of ‘unclear’ PSEN1 variants. Of note, the analysis of PSEN1 variants presenting additionally with spastic paraparesis, indicates that a different mechanism underlies the aetiology of this distinct clinical phenotype. This study thus delivers valuable assays for fundamental, clinical and genetic research as well as supports therapeutic interventions aimed at shifting Aβ profiles towards shorter Aβ peptides
- …