42 research outputs found

    Application of combined omics platforms to accelerate biomedical discovery in diabesity

    Get PDF
    Diabesity has become a popular term to describe the specific form of diabetes that develops late in life and is associated with obesity. While there is a correlation between diabetes and obesity, the association is not universally predictive. Defining the metabolic characteristics of obesity that lead to diabetes, and how obese individuals who develop diabetes different from those who do not, are important goals. The use of large-scale omics analyses (e.g., metabolomic, proteomic, transcriptomic, and lipidomic) of diabetes and obesity may help to identify new targets to treat these conditions. This report discusses how various types of omics data can be integrated to shed light on the changes in metabolism that occur in obesity and diabetes

    α-Hydroxybutyrate Is an Early Biomarker of Insulin Resistance and Glucose Intolerance in a Nondiabetic Population

    Get PDF
    Background: Insulin resistance is a risk factor for type 2 diabetes and cardiovascular disease progression. Current diagnostic tests, such as glycemic indicators, have limitations in the early detection of insulin resistant individuals. We searched for novel biomarkers identifying these at-risk subjects. Methods: Using mass spectrometry, non-targeted biochemical profiling was conducted in a cohort of 399 nondiabetic subjects representing a broad spectrum of insulin sensitivity and glucose tolerance (based on the hyperinsulinemic euglycemic clamp and oral glucose tolerance testing, respectively). Results: Random forest statistical analysis selected alpha-hydroxybutyrate (alpha-HB) as the top-ranked biochemical for separating insulin resistant (lower third of the clamp-derived M(FFM) = 33 [12] mu mol.min(-1).kg(FFM)(-1), median [interquartile range], n = 140) from insulin sensitive subjects (M(FFM) = 66 [23] mu mol.min(-1).kg(FFM)(-1)) with a 76% accuracy. By targeted isotope dilution assay, plasma alpha-HB concentrations were reciprocally related to M(FFM); and by partition analysis, an alpha-HB value of 5 mu g/ml was found to best separate insulin resistant from insulin sensitive subjects. alpha-HB also separated subjects with normal glucose tolerance from those with impaired fasting glycemia or impaired glucose tolerance independently of, and in an additive fashion to, insulin resistance. These associations were also independent of sex, age and BMI. Other metabolites from this global analysis that significantly correlated to insulin sensitivity included certain organic acid, amino acid, lysophospholipid, acylcarnitine and fatty acid species. Several metabolites are intermediates related to alpha-HB metabolism and biosynthesis. Conclusions: alpha-hydroxybutyrate is an early marker for both insulin resistance and impaired glucose regulation. The underlying biochemical mechanisms may involve increased lipid oxidation and oxidative stress

    Rats bred for low and high running capacity display alterations in peripheral tissues and nerves relevant to neuropathy and pain

    Full text link
    IntroductionDiet and activity are recognized as modulators of nervous system disease, including pain. Studies of exercise consistently reveal a benefit on pain. This study focused on female rats to understand differences related to metabolic status and peripheral nerve function in females.MethodsHere, we investigated parameters of peripheral nerve function relevant to pain in rats selectively bred for high (high‐capacity runners; HCR) or low endurance exercise capacity (low‐capacity runners; LCR) resulting in divergent intrinsic aerobic capacities and susceptibility for metabolic conditions.ResultsLCR female rats have reduced mechanical sensitivity, higher intraepidermal nerve fiber density and TrkA‐positive epidermal axons, increased numbers of Langerhans and mast cells in cutaneous tissues, and a higher fat content despite similar overall body weights compared to female HCR rats. Sensory and motor nerve conduction velocities, thermal sensitivity, and mRNA expression of selected genes relevant to peripheral sensation were not different.ConclusionsThese results suggest that aerobic capacity and metabolic status influence sensory sensitivity and aspects of inflammation in peripheral tissues that could lead to poor responses to tissue damage and painful stimuli. The LCR and HCR rats should prove useful as models to assess how the metabolic status impacts pain.These results suggest that aerobic capacity and metabolic status influence sensory sensitivity and aspects of inflammation in peripheral tissues that could lead to poor responses to tissue damage and painful stimuli. The LCR and HCR rats should prove useful as models to assess how the metabolic status impacts pain.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139060/1/brb3780.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139060/2/brb3780_am.pd

    Ethylene Glycol Monomethyl Ether–Induced Toxicity Is Mediated through the Inhibition of Flavoprotein Dehydrogenase Enzyme Family

    Get PDF
    Ethylene glycol monomethyl ether (EGME) is a widely used industrial solvent known to cause adverse effects to human and other mammals. Organs with high metabolism and rapid cell division, such as testes, are especially sensitive to its actions. In order to gain mechanistic understanding of EGME-induced toxicity, an untargeted metabolomic analysis was performed in rats. Male rats were administrated with EGME at 30 and 100 mg/kg/day. At days 1, 4, and 14, serum, urine, liver, and testes were collected for analysis. Testicular injury was observed at day 14 of the 100 mg/kg/day group only. Nearly 1900 metabolites across the four matrices were profiled using liquid chromatography-mass spectrometry/mass spectrometry and gas chromatography-mass spectrometry. Statistical analysis indicated that the most significant metabolic perturbations initiated from the early time points by EGME were the inhibition of choline oxidation, branched-chain amino acid catabolism, and fatty acid β-oxidation pathways, leading to the accumulation of sarcosine, dimethylglycine, and various carnitine- and glycine-conjugated metabolites. Pathway mapping of these altered metabolites revealed that all the disrupted steps were catalyzed by enzymes in the primary flavoprotein dehydrogenase family, suggesting that inhibition of flavoprotein dehydrogenase–catalyzed reactions may represent the mode of action for EGME-induced toxicity. Similar urinary and serum metabolite signatures are known to be the hallmarks of multiple acyl-coenzyme A dehydrogenase deficiency in humans, a genetic disorder because of defects in primary flavoprotein dehydrogenase reactions. We postulate that disruption of key biochemical pathways utilizing flavoprotein dehydrogenases in conjugation with downstream metabolic perturbations collectively result in the EGME-induced tissue damage

    Simple Sequence Repeats in the National Longitudinal Study of Adolescent Health: An Ethnically Diverse Resource for Genetic Analysis of Health and Behavior

    Get PDF
    Simple sequence repeats (SSRs) are one of the earliest available forms of genetic variation available for analysis and have been utilized in studies of neurological, behavioral, and health phenotypes. Although findings from these studies have been suggestive, their interpretation has been complicated by a variety of factors including, among others, limited power due to small sample sizes. The current report details the availability, diversity, and allele and genotype frequencies of six commonly examined SSRs in the ethnically diverse, population-based National Longitudinal Study of Adolescent Health (Add Health). A total of 106,743 genotypes were generated across 15,140 participants that included four microsatellites and two di-nucleotide repeats in three dopamine genes (DAT1, DRD4, DRD5), the serotonin transporter (5HTT), and monoamine oxidase A (MAOA). Allele and genotype frequencies showed a complex pattern and differed significantly between populations. For both di-nucleotide repeats we observed a greater allelic diversity than previously reported. The availability of these six SSRs in a large, ethnically diverse sample with extensive environmental measures assessed longitudinally offers a unique resource for researchers interested in health and behavior

    Phoenix Is Required for Mechanosensory Hair Cell Regeneration in the Zebrafish Lateral Line

    Get PDF
    In humans, the absence or irreversible loss of hair cells, the sensory mechanoreceptors in the cochlea, accounts for a large majority of acquired and congenital hearing disorders. In the auditory and vestibular neuroepithelia of the inner ear, hair cells are accompanied by another cell type called supporting cells. This second cell population has been described as having stem cell-like properties, allowing efficient hair cell replacement during embryonic and larval/fetal development of all vertebrates. However, mammals lose their regenerative capacity in most inner ear neuroepithelia in postnatal life. Remarkably, reptiles, birds, amphibians, and fish are different in that they can regenerate hair cells throughout their lifespan. The lateral line in amphibians and in fish is an additional sensory organ, which is used to detect water movements and is comprised of neuroepithelial patches, called neuromasts. These are similar in ultra-structure to the inner ear's neuroepithelia and they share the expression of various molecular markers. We examined the regeneration process in hair cells of the lateral line of zebrafish larvae carrying a retroviral integration in a previously uncharacterized gene, phoenix (pho). Phoenix mutant larvae develop normally and display a morphologically intact lateral line. However, after ablation of hair cells with copper or neomycin, their regeneration in pho mutants is severely impaired. We show that proliferation in the supporting cells is strongly decreased after damage to hair cells and correlates with the reduction of newly formed hair cells in the regenerating phoenix mutant neuromasts. The retroviral integration linked to the phenotype is in a novel gene with no known homologs showing high expression in neuromast supporting cells. Whereas its role during early development of the lateral line remains to be addressed, in later larval stages phoenix defines a new class of proteins implicated in hair cell regeneration
    corecore