17 research outputs found

    Effect of thrombin peptide 508 (TP508) on bone healing during distraction osteogenesis in rabbit tibia

    Get PDF
    Thrombin-related peptide 508 (TP508) accelerates bone regeneration during distraction osteogenesis (DO). We have examined the effect of TP508 on bone regeneration during DO by immunolocalization of Runx2 protein, a marker of osteoblast differentiation, and of osteopontin (OPN) and bone sialoprotein (BSP), two late markers of the osteoblast lineage. Distraction was performed in tibiae of rabbits over a period of 6 days. TP508 (30 or 300 μg) or vehicle was injected into the distraction gap at the beginning and end of the distraction period. Two weeks after active distraction, tissue samples were harvested and processed for immunohistochemical analysis. We also tested the in vitro effect of TP508 on Runx2 mRNA expression in osteoblast-like (MC3T3-E1) cells by polymerase chain reaction analysis. Runx2 and OPN protein were observed in preosteoblasts, osteoblasts, osteocytes of newly formed bone, blood vessel cells and many fibroblast-like cells of the soft connective tissue. Immunostaining for BSP was more restricted to osteoblasts and osteocytes. Significantly more Runx2- and OPN-expressing cells were seen in the group treated with 300 μg TP508 than in the control group injected with saline or with 30 μg TP508. However, TP508 failed to increase Runx2 mRNA levels significantly in MC3T3-E1 cells after 2–3 days of exposure. Our data suggest that TP508 enhances bone regeneration during DO by increasing the proportion of cells of the osteoblastic lineage. Clinically, TP508 may shorten the healing time during DO; this might be of benefit when bone regeneration is slow

    The role of peptides in bone healing and regeneration: A systematic review

    Get PDF
    Background: Bone tissue engineering and the research surrounding peptides has expanded significantly over the last few decades. Several peptides have been shown to support and stimulate the bone healing response and have been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration. Methods: A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study. Results: Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists. Several peptides were found to upregulate the bone healing response in experimental models and could act as potential candidates for future clinical applications. However, from the available peptides that reached the level of clinical trials, the presented results are limited. Conclusion: Further research is desirable to shed more light into the processes governing the osteoprogenitor cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment modalities for bone repair will emerge

    Prospective clinical and radiographic evaluation of an allogeneic bone matrix containing stem cells (Trinity Evolution® Viable Cellular Bone Matrix) in patients undergoing two-level anterior cervical discectomy and fusion

    No full text
    Abstract Background Trinity Evolution® (TE), a viable cellular bone allograft, previously demonstrated high fusion rates and no safety-related concerns after single-level anterior cervical discectomy and fusion (ACDF) procedures. This prospective multicenter clinical study was performed to assess the radiographic and clinical outcomes of TE in subjects undergoing two-level ACDF procedures. Methods In a prospective, multicenter study, 40 subjects that presented with symptomatic cervical degeneration at two adjacent vertebral levels underwent instrumented ACDF using TE autograft substitute in a polyetherethereketone (PEEK) cage. At 12 months, radiographic fusion status was evaluated by dynamic motion plain radiographs and thin cut CT with multiplanar reconstruction by a panel that was blinded to clinical outcome. Fusion success was defined by angular motion (≤4°) and the presence of bridging bone across the adjacent vertebral endplates. Clinical pain and function assessments included the Neck Disability Index (NDI), neck and arm pain as evaluated by visual analog scales (VAS), and SF-36 at both 6 and 12 months. Results At both 6 and 12 months, all clinical outcome scores (SF-36, NDI, and VAS pain) improved significantly (p < 0.05) compared to baseline values. There were no adverse events or infections that were attributed to the graft material, no subjects that required revisions, and no significant decreases to mean neurological evaluations at any time as compared to baseline. At 12 months, the per subject and per level fusion rate was 89.4 and 93.4%, respectively. Subgroup analysis of subjects with risk factors for pseudoarthrosis (current or former smokers, diabetic, or obese/extremely obese) compared to those without risk factors demonstrated no significant differences in fusion rates. Conclusions Patients undergoing two-level ACDF with TE in combination with a PEEK interbody spacer and supplemental anterior fixation had a high rate of fusion success without any serious adverse events related to the graft material. Trial registration Trinity Evolution in Anterior Cervical Disectomy and Fusion (ACDF) NCT0095193

    The effect of ultrasound on the healing of muscle-pediculated bone graft in scaphoid non-union

    No full text
    The use of pedicled vascularised bone grafts from the distal radius makes it possible to transfer bone with a preserved circulation and viable osteoclasts and osteoblasts. Experiments performed at the basic science level has provided substantial evidence that low-intensity ultrasound can accelerate and augment the fracture healing process. Only an adequate double-blind trial comparing treatment by ultrasound stimulation in patients treated by similar surgical techniques can provide evidence of the true effect of ultrasound. This paper describes the results of such a trial. From 1999 to 2004, 21 fractures of the scaphoid with established non-union treated with vascularised pedicle bone graft were selected for inclusion in a double-blind trial. All patients were males, with an average age of 26.7 years (range 17–42 years) and an average interval between injury and surgery of 38.4 months (range 3 months–10 years). Low-intensity ultrasound was delivered using a TheraMed 101-B bone-growth stimulator (30 mW/cm2, 20 min/day), which was modified to accomplish double-blinding. These modifications did not affect the designated active units. The placebo units were adjusted to give no ultrasound signal output across the transducer. Externally, all units appeared identical but were marked with individual code numbers. Patients were randomly allocated to either an active or placebo stimulation. Follow-up averaged 2.3 years (range 1–4 years). All patients achieved fracture union (active and placebo groups), but compared with the placebo device (11 patients), the active device (ten patients) accelerated healing by 38 days (56±3.2 days compared with 94±4.8 days, p<0.0001, analysis of variance)

    Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation

    Get PDF
    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. © The Author(s) 2016
    corecore