254 research outputs found
Nonlinear mean-field dynamo and prediction of solar activity
We apply a nonlinear mean-field dynamo model which includes a budget equation
for the dynamics of Wolf numbers to predict solar activity. This dynamo model
takes into account the algebraic and dynamic nonlinearities of the alpha
effect, where the equation for the dynamic nonlinearity is derived from the
conservation law for the magnetic helicity. The budget equation for the
evolution of the Wolf number is based on a formation mechanism of sunspots
related to the negative effective magnetic pressure instability. This
instability redistributes the magnetic flux produced by the mean-field dynamo.
To predict solar activity on the time scale of one month we use a method based
on a combination of the numerical solution of the nonlinear mean-field dynamo
equations and the artificial neural network. A comparison of the results of the
prediction of the solar activity with the observed Wolf numbers demonstrates a
good agreement between the forecast and observations.Comment: 15 pages, 6 figures, jpp.cls, final versio
The Sun's Preferred Longitudes and the Coupling of Magnetic Dynamo Modes
Observations show that solar activity is distributed non-axisymmetrically,
concentrating at "preferred longitudes". This indicates the important role of
non-axisymmetric magnetic fields in the origin of solar activity. We
investigate the generation of the non-axisymmetric fields and their coupling
with axisymmetric solar magnetic field. Our kinematic generation (dynamo) model
operating in a sphere includes solar differential rotation, which approximates
the differential rotation obtained by inversion of helioseismic data, modelled
distributions of the turbulent resistivity, non-axisymmetric mean helicity, and
meridional circulation in the convection zone. We find that (1) the
non-axisymmetric modes are localised near the base of the convection zone,
where the formation of active regions starts, and at latitudes around
; (2) the coupling of non-axisymmetric and axisymmetric modes
causes the non-axisymmetric mode to follow the solar cycle; the phase relations
between the modes are found. (3) The rate of rotation of the first
non-axisymmetric mode is close to that determined in the interplanetary space.Comment: 22 pages, 18 figures. Accepted for publication in the Astrophysical
Journa
RXTE and ASCA Constraints on Non-thermal Emission from the A2256 Galaxy Cluster
An 8.3 hour observation of the Abell 2256 galaxy cluster using the Rossi
X-ray Timing Explorer proportional counter array produced a high quality
spectrum in the 2 - 30 keV range. Joint fitting with the 0.7 - 11 keV spectrum
obtained with the Advanced Satellite for Astrophysics and Cosmology gas imaging
spectrometer gives an upperlimit of 2.3x10^-7 photons/cm^2/sec/keV for
non-thermal emission at 30 keV. This yields a lower limit to the mean magnetic
field of 0.36 micro Gauss (uG) and an upperlimit of 1.8x10^-13 ergs/cm^3 for
the cosmic-ray electron energy density. The resulting lower limit to the
central magnetic field is ~1 - 3 uG While a magnetic field of ~0.1 - 0.2 uG can
be created by galaxy wakes, a magnetic field of several uG is usually
associated with a cooling flow or, as in the case of the Coma cluster, a
subcluster merger. However, for A2256, the evidence for a merger is weak and
the main cluster shows no evidence of a cooling flow. Thus, there is presently
no satisfactory hypothesis for the origin of an average cluster magnetic field
as high as >0.36 uG in the A2256 cluster.Comment: 8 pages, Astrophysical Journal (in press
Memory Effects in Turbulent Dynamo: Generation and Propagation of Large Scale Magnetic Field
We are concerned with large scale magnetic field dynamo generation and
propagation of magnetic fronts in turbulent electrically conducting fluids. An
effective equation for the large scale magnetic field is developed here that
takes into account the finite correlation times of the turbulent flow. This
equation involves the memory integrals corresponding to the dynamo source term
describing the alpha-effect and turbulent transport of magnetic field. We find
that the memory effects can drastically change the dynamo growth rate, in
particular, non-local turbulent transport might increase the growth rate
several times compared to the conventional gradient transport expression.
Moreover, the integral turbulent transport term leads to a large decrease of
the speed of magnetic front propagation.Comment: 13 pages, 2 figure
Reconnection in a Weakly Stochastic Field
We examine the effect of weak, small scale magnetic field structure on the
rate of reconnection in a strongly magnetized plasma. This affects the rate of
reconnection by reducing the transverse scale for reconnection flows, and by
allowing many independent flux reconnection events to occur simultaneously.
Allowing only for the first effect and using Goldreich and Sridhar's model of
strong turbulence in a magnetized plasma with negligible intermittency, we find
that the lower limit for the reconnection speed is the Alfven speed times the
Lundquist number to the power (-3/16). The upper limit on the reconnection
speed is typically a large fraction of Alfven speed. We argue that generic
reconnection in turbulent plasmas will normally occur at close to this upper
limit. The fraction of magnetic energy that goes directly into electron heating
scales as Lundquist number to the power (-2/5) and the thickness of the current
sheet scales as the Lundquist number to the power (-3/5). A significant
fraction of the magnetic energy goes into high frequency Alfven waves. We claim
that the qualitative sense of these conclusions, that reconnection is fast even
though current sheets are narrow, is almost independent of the local physics of
reconnection and the nature of the turbulent cascade. As the consequence of
this the Galactic and Solar dynamos are generically fast, i.e. do not depend on
the plasma resistivity.Comment: Extended version accepted to ApJ, 44pages, 2 figure
Primordial Magnetic Field Limits from Cosmic Microwave Background Bispectrum of Magnetic Passive Scalar Modes
Primordial magnetic fields lead to non-Gaussian signals in the cosmic
microwave background (CMB) even at the lowest order, as magnetic stresses and
the temperature anisotropy they induce depend quadratically on the magnetic
field. In contrast, CMB non-Gaussianity due to inflationary scalar
perturbations arises only as a higher order effect. Apart from a compensated
scalar mode, stochastic primordial magnetic fields also produce scalar
anisotropic stress that remains uncompensated till neutrino decoupling. This
gives rise to an adiabatic-like scalar perturbation mode that evolves passively
thereafter (called the passive mode). We compute the CMB reduced bispectrum
() induced by this passive mode, sourced via the
Sachs-Wolfe effect, on large angular scales. For any configuration of
bispectrum, taking a partial sum over mode-coupling terms, we find a typical
value of , for a magnetic field of nG, assuming a nearly
scale-invariant magnetic spectrum . We also evaluate, in full, the bispectrum
for the squeezed collinear configuration over all angular mode-coupling terms
and find . These values are more than times larger than the
previously calculated magnetic compensated scalar mode CMB bispectrum.
Observational limits on the bispectrum from WMAP7 data allow us to set upper
limits of nG on the present value of the cosmic magnetic field of
primordial origin. This is over 10 times more stringent than earlier limits on
based on the compensated mode bispectrum.Comment: 9 page
- …