13 research outputs found

    Simple Penning Ion Source for Laboratory Research and Development Applications

    Get PDF
    A simple Penning ion generator (PIG) that can be easily fabricated with simple machining skills and standard laboratory accessories is described. The PIG source uses an iron cathode body, samarium cobalt permanent magnet, stainless steel anode, and iron cathode faceplate to generate a plasma discharge that yields a continuous 1 mA beam of positively charged hydrogen ions at 1 mTorr of pressure. This operating condition requires 5.4 kV and 32.4 W of power. Operation with helium is similar to hydrogen. The ion source is being designed and investigated for use in a sealed-tube neutron generator; however, this ion source is thoroughly described so that it can be easily implemented by other researchers for other laboratory research and development applications

    Analyzing Feshbach resonances -- A 6^6Li -133^{133}Cs case study

    Full text link
    We provide a comprehensive comparison of a coupled channels calculation, the asymptotic bound state model (ABM), and the multichannel quantum defect theory (MQDT). Quantitative results for 6^6Li -133^{133}Cs are presented and compared to previously measured 6^6Li -133^{133}Cs Feshbach resonances (FRs) [M. Repp et al., Phys. Rev. A 87 010701(R) (2013)]. We demonstrate how the accuracy of the ABM can be stepwise improved by including magnetic dipole-dipole interactions and coupling to a non-dominant virtual state. We present a MQDT calculation, where magnetic dipole-dipole and second order spin-orbit interactions are included. A frame transformation formalism is introduced, which allows the assignment of measured FRs with only three parameters. All three models achieve a total rms error of < 1G on the observed FRs. We critically compare the different models in view of the accuracy for the description of FRs and the required input parameters for the calculations.Comment: 16 pages, 3 figures, 1 tabl
    corecore