33 research outputs found

    Polarized electron-beam acceleration driven by vortex laser pulses

    Full text link
    We propose a new approach based on an all-optical set-up for generating relativistic polarized electron beams via vortex Laguerre-Gaussian (LG) laser-driven wakefield acceleration. Using a pre-polarized gas target, we find that the topology of the vortex wakefield resolves the depolarization issue of the injected electrons. In full three-dimensional particle-in-cell simulations, incorporating the spin dynamics via the Thomas-Bargmann Michel Telegdi equation, the LG laser preserves the electron spin polarization by more than 80% at high beam charge and flux. The method releases the limit on beam flux for polarized electron acceleration and promises more than an order of magnitude boost in peak flux, as compared to Gaussian beams. These results suggest a promising table-top method to produce energetic polarized electron beams.Comment: We replace some results and revise some description

    Elite Opposition-Based Social Spider Optimization Algorithm for Global Function Optimization

    No full text
    The Social Spider Optimization algorithm (SSO) is a novel metaheuristic optimization algorithm. To enhance the convergence speed and computational accuracy of the algorithm, in this paper, an elite opposition-based Social Spider Optimization algorithm (EOSSO) is proposed; we use an elite opposition-based learning strategy to enhance the convergence speed and computational accuracy of the SSO algorithm. The 23 benchmark functions are tested, and the results show that the proposed elite opposition-based Social Spider Optimization algorithm is able to obtain an accurate solution, and it also has a fast convergence speed and a high degree of stability

    A Review of Root Zone Soil Moisture Estimation Methods Based on Remote Sensing

    No full text
    Root zone soil moisture (RZSM) controls vegetation transpiration and hydraulic distribution processes and plays a key role in energy and water exchange between land surface and atmosphere; hence, accurate estimation of RZSM is crucial for agricultural irrigation management practices. Traditional methods to measure soil moisture at stations are laborious and spatially uneven, making it difficult to obtain soil moisture data on a large scale. Remote sensing techniques can provide soil moisture in a large-scale range, but they can only provide surface soil moisture (SSM) with a depth of approximately 5–10 cm. In order to obtain a large range of soil moisture for deeper soil layers, especially the crop root zone with a depth of about 100–200 cm, numerous methods based on remote sensing inversion have been proposed. This paper analyzes and summarizes the research progress of remote sensing-based RZSM estimation methods in the past few decades and classifies these methods into four categories: empirical methods, semi-empirical methods, physics-based methods, and machine learning methods. Then, the advantages and disadvantages of various methods are outlined. Additionally an outlook on the future development of RZSM estimation methods is made and discussed

    Regional Coordination and Security of Water–Energy–Food Symbiosis in Northeastern China

    No full text
    The interactions of water, energy, and food, which are essential resources for human survival, livelihoods, production, and development, constitute a water–energy–food (WEF) nexus. Applying symbiosis theory, the economic, social, and natural factors were considered at the same time in the WEF system, and we conducted a micro-level investigation focusing on the stability, coordination, and sustainability of the symbiotic units (water, energy, and food), and external environment of the WEF system in 36 prefecture-level cities across three northeastern provinces of China. Finally, we analyzed the synergistic safety and coupling coordination degree of the WEF system by the combination of stability, coordination, and sustainability, attending to the coordination relationship and influences of the external environment. The results indicated that the synergistic safety of the WEF system in three northeastern provinces need to equally pay attention to the stability, coordination, and sustainability of the WEF system, since their weights were 0.32, 0.36 and 0.32, respectively. During 2010–2016, the synergistic safety indexes of the WEF system ranged between 0.40 and 0.60, which was a state of boundary safety. In the current study, the coupling coordination degree of the WEF system fluctuated around a value of 0.6, maintaining a primary coordination level; while in the future of 2021–2026, it will decline to 0.57–0.60, dropping to a weak coordinated level. The conclusion could provide effective information for decision-makers to take suitable measures for the security development of a WEF system

    A Cuboid CNN Model With an Attention Mechanism for Skeleton-Based Action Recognition

    No full text

    Impacts of Water Consumption in the Haihe Plain on the Climate of the Taihang Mountains, North China

    No full text
    In this study, the RegCM4 regional climate model was employed to investigate the impacts of water consumption in the Haihe Plain on the local climate in the nearby Taihang Mountains. Four simulation tests of twelve years’ duration were conducted with various schemes of water consumption by residents, industries, and agriculture. The results indicate that water exploitation and consumption in the Haihe Plain causes wetting and cooling of the local land surface and rapid increases in the depth of the groundwater table. These wetting and cooling effects increase atmospheric moisture, which is transported to surrounding areas, including the Taihang Mountains to the west. In a simulation where water consumption in the Haihe Plain was doubled, the wetting and cooling effects in the Taihang Mountains were enhanced but at less than double the amount, because a cooler land surface does not enhance atmospheric convective activities. The impacts of water consumption activities in the Haihe Plain were more obvious during the irrigation seasons (primarily spring and summer). In addition, the land surface variables in the Taihang Mountains, e.g., sensible and latent heat fluxes, were less sensitive to the climatic impacts due to the water consumption activities in the Haihe Plain because they were strongly affected by local surface energy balance
    corecore