5 research outputs found

    Conformational Distribution and α‑Helix to β‑Sheet Transition of Human Amylin Fragment Dimer

    No full text
    Experiments suggested that the fibrillation of the 11–25 fragment (hIAPP(11–25)) of human islet amyloid polypeptide (hIAPP or amylin) involves the formation of transient α-helical intermediates, followed by conversion to β-sheet-rich structure. However, atomic details of α-helical intermediates and the transition mechanism are mostly unknown. We investigated the structural properties of the monomer and dimer in atomistic detail by replica exchange molecular dynamics (REMD) simulations. Transient α-helical monomers and dimers were both observed in the REMD trajectories. Our calculated H<sup>α</sup> chemical shifts based on the monomer REMD run are in agreement with the solution-state NMR experimental observations. Multiple 300 ns MD simulations at 310 K show that α-helix-to-β-sheet transition follows two mechanisms: the first involved direct transition of the random coil part of the helical conformation into antiparallel β-sheet, and in the second, the α-helical conformation unfolded and converted into antiparallel β-sheet. In both mechanisms, the α-helix-to-β-sheet transition occurred via random coil, and the transition was accompanied by an increase of interpeptide contacts. In addition, our REMD simulations revealed different temperature dependencies of helical and β-structures. Comparison with experimental data suggests that the propensity for hIAPP(11–25) to form α-helices and amyloid structures is concentration- and temperature-dependent

    Temperature-Dependent Conformational Properties of Human Neuronal Calcium Sensor‑1 Protein Revealed by All-Atom Simulations

    No full text
    Neuronal calcium sensor-1 (NCS-1) protein has orthologues from <i>Saccharomyces cerevisiae</i> to human with highly conserved amino acid sequences. NCS-1 is an important factor controlling the animal’s response to temperature change. This leads us to investigate the temperature effects on the conformational dynamics of human NCS-1 at 310 and 316 K by all-atom molecular dynamics (MD) simulations and dynamic community network analysis. Four independent 500 ns MD simulations show that secondary structure content at 316 K is similar to that at 310 K, whereas the global protein structure is expanded. Loop 3 (L3) adopts an extended state occuping the hydrophobic crevice, and the number of suboptimal communication paths between residue D176 and V190 is reduced at 316 K. The dynamic community network analysis suggests that the interdomain correlation is weakened, and the intradomain coupling is strengthened at 316 K. The elevated temperature reduces the number of the salt bridges, especially in C-domain. This study suggests that the elevated temperature affects the conformational dynamics of human NCS-1 protein. Comparison of the structural dynamics of R102Q mutant and Δ176–190 truncated NCS-1 suggests that the structural and dynamical response of NCS-1 protein to elevated temperature may be one of its intrinsic functional properties

    Interaction Dynamics in Inhibiting the Aggregation of Aβ Peptides by SWCNTs: A Combined Experimental and Coarse-Grained Molecular Dynamic Simulation Study

    No full text
    The aggregation of amyloid-β peptides (Aβ) is considered as the main possible cause of Alzheimer’s disease (AD). How to suppress the formation of toxic Aβ aggregates has been an intensive concern over the past several decades. Increasing evidence shows that whether carbon nanomaterials can suppress or promote the aggregation depends on their physicochemical properties. However, their interaction dynamics remains elusive as amyloid fibrillation is a complex multistep process. In this paper, we utilized atomic force microscopy (AFM), electrostatic force microscopy (EFM), ThT/fluorescence spectroscopy, and cell viability measurements, combined with coarse-grained molecular dynamic (MD) simulations to study the dynamic interaction of full length Aβ with single-walled carbon nanotubes (SWCNT). At the single SWCNTs scale, it is found that the presence of SWCNTs would result in rapid and spontaneous adsorption of Aβ<sub>1–40</sub> peptides on their surface and stacking into nonfibrillar aggregates with reduced toxicity, which plays an important role in inhibiting the formation of toxic oligomers and mature fibrils. Our results provide new clues for studying the interaction in amyloid/SWCNTs system as well as for seeking amyloidosis inhibitors with carbon nanomaterials

    Effects of the C‑Terminal Tail on the Conformational Dynamics of Human Neuronal Calcium Sensor‑1 Protein

    No full text
    Neuronal calcium sensor-1 (NCS-1) protein has been implicated in multiple neuronal functions by binding partners mostly through a largely exposed hydrophobic crevice (HC). In the absence of a ligand, the C-terminal tail (loop L3, residues D176 to V190) binds directly to the HC pocket as a ligand mimetic, occupying the HC and regulating its conformational stability. A recent experimental study reported that L3 deletion resulted in global structure destabilization. However, the influence of C-terminal tail on the conformations of NCS-1 protein is unclear at the atomic level. In this study, we investigated the structural properties and the conformational dynamics of wild type NCS-1 and L3 truncation variant by extensive all-atom molecular dynamics (MD) simulations. Our cumulative 2 μs MD simulations demonstrated that L3 deletion increased the structural flexibility of the C-domain and the distant N-domain. The community network analysis illustrated that C-terminal tail truncation weakened the interdomain correlation. Moreover, our data showed that the variant significantly disrupted the salt bridges network and expanded simultaneously the global structure and HC. These conformational changes caused by C-terminal tail truncation may affect the regulation of target interactions. Our study provides atomic details of the conformational dynamics effects of the C-terminal tail on human wild type NCS-1

    Expanding the Nanoarchitectural Diversity Through Aromatic Di- and Tri-Peptide Coassembly: Nanostructures and Molecular Mechanisms

    No full text
    Molecular self-assembly is pivotal for the formation of ordered nanostructures, yet the structural diversity obtained by the use of a single type of building block is limited. Multicomponent coassembly, utilized to expand the architectural space, is principally based on empirical observations rather than rational design. Here we report large-scale molecular dynamics simulations of the coassembly of diphenylalanine (FF) and triphenylalanine (FFF) peptides at various mass ratios. Our simulations show that FF and FFF can co-organize into both canonical and noncanonical assemblies. Strikingly, toroid nanostructures, which were rarely observed for the extensively studied FF or FFF, are often seen in the FF-FFF coassembly simulations and later corroborated by scanning electron microscopy. Our simulations demonstrate a wide ratio-dependent variation of nanostructure morphologies including hollow and solid assemblies, much richer than those formed by each individual moiety. The hollow-solid structural transformation displays a discontinuous transition feature, and the toroids appear to be an obligatory intermediate for the structural transition. Interaction analysis reveals that the hollow-solid structural transition is mostly dominated by FF–FFF interactions, while the nanotoroid formation is determined by the competition between FF–water and FFF–water interactions. This study provides both structural and mechanistic insights into the coassembly of FF and FFF peptides, thus offering a molecular basis for the rational design of bionanomaterials utilizing peptide coassembly
    corecore