11 research outputs found

    Surface Acoustic Wave Hydrogen Sensors Based on Nanostructured Pd/WO<sub>3</sub> Bilayers

    No full text
    The effect of nanostructure of PLD (Pulsed Laser Deposition)-deposited Pd/WO3 sensing films on room temperature (RT) hydrogen sensing properties of SAW (Surface Acoustic Wave) sensors was studied. WO3 thin films with different morphologies and crystalline structures were obtained for different substrate temperatures and oxygen deposition pressures. Nanoporous films are obtained at high deposition pressures regardless of the substrate temperature. At lower pressures, high temperatures lead to WO3 c-axis nanocolumnar growth, which promotes the diffusion of hydrogen but only once H2 has been dissociated in the nanoporous Pd layer. XRD (X-ray Diffraction) analysis indicates texturing of the WO3 layer not only in the case of columnar growth but for other deposition conditions as well. However, it is only the predominantly c-axis growth that influences film sensing properties. Bilayers consisting of nanoporous Pd layers deposited on top of such WO3 layers lead to good sensing results at RT. RT sensitivities of 0.12&#8315;0.13 Hz/ppm to hydrogen are attained for nanoporous bilayer Pd/WO3 films and of 0.1 Hz/ppm for bilayer films with a nanocolumnar WO3 structure. SAW sensors based on such layers compare favorably with WO3-based hydrogen detectors, which use other sensing methods, and with SAW sensors with dense Pd/WO3 bilayers

    Synthesis of flower-like tungsten nanoparticles by magnetron sputtering combined with gas aggregation

    No full text
    We present the synthesis of tungsten nanoparticles using a gas aggregation cluster source based on a magnetron sputtering discharge. The nanoparticles have sizes between 70 and 100 nm and a dendritic morphology, with branches emerging from the center and evolving in a flower-like pattern. Structural investigations revealed the presence of α-W and residual β-W crystalline phases. Post deposition oxidation of the nanoparticles is also investigated

    Stearic Acid/Layered Double Hydroxides Composite Thin Films Deposited by Combined Laser Techniques

    No full text
    We report on the investigation of stearic acid-layered double hydroxide (LDH) composite films, with controlled wettability capabilities, deposited by a combined pulsed laser deposition (PLD)-matrix-assisted pulsed laser evaporation (MAPLE) system. Two pulsed lasers working in IR or UV were used for experiments, allowing the use of proper deposition parameters (wavelength, laser fluence, repetition rate) for each organic and inorganic component material. We have studied the time stability and wettability properties of the films and we have seen that the morphology of the surface has a low effect on the wettability of the surfaces. The obtained composite films consist in stearic acid aggregates in LDH structure, exhibiting a shift to hydrophobicity after 36 months of storage

    The Influence of the Preparation Method on the Physico-Chemical Properties and Catalytic Activities of Ce-Modified LDH Structures Used as Catalysts in Condensation Reactions

    No full text
    Mechanical activation and mechanochemical reactions are the subjects of mechanochemistry, a special branch of chemistry studied intensively since the 19th century. Herein, we comparably describe two synthesis methods used to obtain the following layered double hydroxide doped with cerium, Mg3Al0.75Ce0.25(OH)8(CO3)0.5·2H2O: the mechanochemical route and the co-precipitation method, respectively. The influence of the preparation method on the physico-chemical properties as determined by multiple techniques such as XRD, SEM, EDS, XPS, DRIFT, RAMAN, DR-UV-VIS, basicity, acidity, real/bulk densities, and BET measurements was also analyzed. The obtained samples, abbreviated HTCe-PP (prepared by co-precipitation) and HTCe-MC (prepared by mechanochemical method), and their corresponding mixed oxides, Ce-PP (resulting from HTCe-PP) and Ce-MC (resulting from HTCe-MC), were used as base catalysts in the self-condensation reaction of cyclohexanone and two Claisen–Schmidt condensations, which involve the reaction between an aromatic aldehyde and a ketone, at different molar ratios to synthesize compounds with significant biologic activity from the flavonoid family, namely chalcone (1,3-diphenyl-2-propen-1-one) and flavone (2-phenyl-4H-1benzoxiran-4-one). The mechanochemical route was shown to have indisputable advantages over the co-precipitation method for both the catalytic activity of the solids and the costs

    The Influence of the Structural and Morphological Properties of WO3 Thin Films Obtained by PLD on the Photoelectrochemical Water-Splitting Reaction Efficiency

    No full text
    Due to its physical and chemical properties, the n-type tungsten oxide (WO3) semiconductor is a suitable photoanode for water decomposition reaction. The responses of the photoelectrochemical PEC water-splitting properties as an effect of structural and optical changes of WO3 thin films, as well as the nature of electrolyte solutions, were studied in this work. The WO3 thins films have been obtained by pulsed laser deposition (PLD) on silicon (Si(001)) covered with platinum substrates using three different laser wavelengths. As the XRD (X-ray diffraction) and XTEM (cross-section transmission electron microscopy) analysis shows, the formation of highly crystalline monocline WO3 phase is formed for the film deposited at 1064 nm wavelength and poor crystalline phases with a large ordering anisotropy, characteristic of 2D structures for the films deposited at 355 nm and 193 nm wavelengths, respectively. The photogenerated current densities Jph depend on the laser wavelength, in both alkaline and acidic electrolyte. The maximum values of the photocurrent density have been obtained for the sample prepared with laser emitting at 355 nm. This behavior can be correlated with the coherent crystallized atomic ordering that appear for long distances (10&ndash;15 nm) in the (001) plane of the monoclinic WO3 phase structure films obtained at 355 nm laser wavelength. All the samples show poor current density in dark conditions and they are very stable in both acidic and alkaline solutions. The highest photocurrent density value is obtained in acidic solution for the WO3 thin film prepared by 355 nm laser (29 mA/cm2 at 1.6 V vs. RHE (1.35 V vs. Ag/AgCl))

    Kaolinite Thin Films Grown by Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation

    No full text
    In this work, thin films of lamellar clays were deposited by laser techniques (matrix assisted pulsed laser evaporation (MAPLE) and pulsed laser deposition (PLD)). The focus of this paper is the optimization of deposition parameters for the production of highly oriented crystalline films. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Contact angle measurements were employed to identify the wetting properties of the deposited thin films. Hydrophobic to superhydrophilic films can be prepared by using different deposition techniques and deposition parameters. MAPLE led to superhydrophilic films with contact angles in the range 4&deg;&ndash;8&deg;, depending on the microstructure and surface roughness at micro and nano scale. The 1064 nm PLD had a high deposition rate and produced a textured film while at &lambda; = 193 nm an extremely thin and amorphous layer was depicted. Oriented kaolinite films were obtained by MAPLE even at 5 wt.% kaolinite in the target

    High Permittivity (1 – <i>x</i>)Ba(Zr<sub>0.2</sub>Ti<sub>0.8</sub>)O<sub>3</sub> – <i>x</i>(Ba<sub>0.7</sub>Ca<sub>0.3</sub>)TiO<sub>3</sub> (<i>x</i> = 0.45) Epitaxial Thin Films with Nanoscale Phase Fluctuations

    No full text
    Epitaxial (1 – <i>x</i>)­Ba­(Ti<sub>0.8</sub>Zr<sub>0.2</sub>)­TiO<sub>3</sub> – <i>x</i>(Ba<sub>0.7</sub>Ca<sub>0.3</sub>)­TiO<sub>3</sub>, <i>x</i> = 0.45 (BCZT 45), thin films have been deposited on (001) SrTiO<sub>3</sub> (STO) and (001/100) SrLaAlO<sub>4</sub> (SLAO) substrates by pulsed laser deposition. X-ray diffraction and high-resolution transmission electron microscopy (HRTEM) confirmed the epitaxial growth of the films. A high structural quality has been evidenced for the BCZT/STO films. Geometric phase analysis (GPA) associated with the HRTEM enabled us to obtain microstrain analysis and the in-plane and out-of-plane lattice parameter variation on different areas. Tetragonality ratio fluctuations at nanoscale level which are relevant for the existence of nanodomains have been evidenced on the BCZT/STO films. The in-plane dielectric constant has been measured on interdigital electrodes deposited by lift-off technique on the top of the films. High values of dielectric permittivity (>3000) combined with low dielectric loss (<0.01) are obtained for BCZT 45 film deposited on STO substrate, showing nearly constant values between 1 kHz and 10 MHz. The high dielectric permittivity of BCZT thin films was attributed to their high structural quality and to the loss of rotation stability of the polarization associated with the presence of nanodomains. This results into a divergence of fluctuations of polarization direction and a peak of dielectric susceptibility. The enhanced switching of such nanodomain configuration was probed by piezoforce microscopy, by writing and reading domains during topography scanning
    corecore