269 research outputs found

    Indexing the Earth Mover's Distance Using Normal Distributions

    Full text link
    Querying uncertain data sets (represented as probability distributions) presents many challenges due to the large amount of data involved and the difficulties comparing uncertainty between distributions. The Earth Mover's Distance (EMD) has increasingly been employed to compare uncertain data due to its ability to effectively capture the differences between two distributions. Computing the EMD entails finding a solution to the transportation problem, which is computationally intensive. In this paper, we propose a new lower bound to the EMD and an index structure to significantly improve the performance of EMD based K-nearest neighbor (K-NN) queries on uncertain databases. We propose a new lower bound to the EMD that approximates the EMD on a projection vector. Each distribution is projected onto a vector and approximated by a normal distribution, as well as an accompanying error term. We then represent each normal as a point in a Hough transformed space. We then use the concept of stochastic dominance to implement an efficient index structure in the transformed space. We show that our method significantly decreases K-NN query time on uncertain databases. The index structure also scales well with database cardinality. It is well suited for heterogeneous data sets, helping to keep EMD based queries tractable as uncertain data sets become larger and more complex.Comment: VLDB201

    Dissolved Organic Phosphorus Production during Simulated Phytoplankton Blooms in a Coastal Upwelling System

    Get PDF
    Dissolved organic phosphorus (DOP) is increasingly recognized as an important phosphorus source to marine primary producers. Despite its importance, the production rate and fate of DOP is poorly understood. In this study, patterns of DOP production were evaluated by tracking the evolution of DOP during simulated phytoplankton blooms initiated with nutrient amended surface waters, relative to controls, from the Oregon (USA) coastal upwelling system. Nitrogen (N) and phosphorus (P) additions were used to decouple DOP production and hydrolysis by inducing or repressing, respectively, community alkaline phosphatase activity. In order to examine the progression of nutrient uptake and DOP production under upwelling versus relaxation conditions, two experiments were initiated with waters collected during upwelling events, and two with waters collected during relaxation events. Maximum [under (+P) conditions] and minimum [under (+N) conditions] DOP production rates were calculated and applied to in situ DOP levels to evaluate which end-member rate most closely approximates the in situ DOP production rate at the four study sites in this coastal system. Increases in DOP concentration occurred by day-5 in control treatments in all experiments. N treatments displayed increased chlorophyll a, increased alkaline phosphatase activity, and yielded lower net DOP production rates relative to controls, suggesting that DOP levels were depressed as a consequence of increased hydrolysis of bioavailable DOP substrates. Phosphorus additions resulted in a significant net production of DOP at all stations, but no increase in chlorophyll a relative to control treatments. The contrasting patterns in DOP production between treatments suggests that changes in the ambient dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN:DIP) ratio could exert profound control over DOP production rates in this system. Patterns of DOP production across the different experiments also suggest that bathymetry-driven differences in water residence times can influence DOP cycling. Taken together, these factors may impact the potential export of DOP to offshore ecosystems

    PPI Questionnaire on Adaptive Wearable Appropriateness as an Autistic Intervention

    Get PDF
    Autism Spectrum Condition (ASC) is a life-long diagnosis, which has a subset of features including hyper-, seeking- and/or hypo-reactivity to sensory inputs or unusual interests (APA, 2013). These qualities are evident across environmental (e.g. response to specific sounds, visual fascination with lights or movements) and physiological domains (e.g. anxiety, respiration or euthermia). Scholars report that ninety (90%) of autistic adults experience sensory issues causing significant barriers at school/work (Leekam et al., 2007). As part of a larger PhD Research Project, this pilot study establishes designs, processes and measures that may establish if autistic individuals find value utilising adaptive/wearable interventions that possibly alter, redirect and/or attenuate disruptive stimuli. This study incorporates benign information not yet containing practical data, other than to provision and trial space where real data is nominally present. This pilot loads systems functionality for future use (e.g. consent, demographic collection, measures, post-mortem/survey feedback, storage, sorting, query, statistical analyses and reporting). Finally, this pilot provisions a follow-on and full-fledge Participant Public Involvement (PPI) designed to exploit data from focus group and co-produced surveys/designs. In turn, these may be used to inform an as-yet-to-be developed interventional prototype. Hence, the forthcoming PPI—by leveraging this pilot—aims to describe what degree sensory distractions occur among adolescent and adult ASC participants. Both pilot and PPI aspire to whether focus, anxiety and attentional concerns are perceived as negative issues and if individuals prefer assistance (vis à vis assistive wearables) to reduce anxiety, distractions and increase focus at school and at work (Bagley et al., 2016). This study results yield promise; in that, a subsequent PPI can be leveraged to obtain co-designed autistic data leading to a randomised clinical trial

    Sound Impairment Effect on Cognitive Skill Performance

    Get PDF
    Autism Spectrum Condition (ASC) is a life-long diagnosis, which has a subset of individualized characteristics consisting of hyper-, seeking- and/or hypo-reactivity to sensory inputs or unusual interests (APA, 2013). These sensitivities are evident in both environmental (e.g. apparent response to specific sounds, visual fascination with lights or movements) and physiological domains (e.g. anxiety, respiration or euthermia). As part of a larger PhD Research Project (SensorAble), this pilot study proposes that autistic individuals who exhibit greater distractibility and reduced focus/attention resulting stimuli may benefit from interventions that alter, redirect and/or attenuate stimuli. In particular, Irrelevant-Sound Effect (ISE) consisting of un-targeted and/or modulated sonics cause greater disruption of performance of simultaneous and visual simple tasks compared to baseline ISE that are merely directed. Using gold-standard Stroop experiments, data collected among neurotypical (NT) and ASC individuals at baseline and at various ISE modes result in greater reaction time (RT) improvements among ASC than NT participants. In this study, which focuses on aural distractibility only, data supports that signal processing may provide a gateway to enhancing focus and attention while reduce distractibility and anxiety in other domains

    Potential Environmental Effects of Deepwater Floating Offshore Wind Energy Facilities

    Get PDF
    Over the last few decades, the offshore wind energy industry has expanded its scope from turbines mounted on foundations driven into the seafloor and standing in less than 60 m of water, to floating turbines moored in 120 m of water, to prospecting the development of floating turbines moored in ~1,000 m of water. Since there are few prototype turbines and mooring systems of these deepwater, floating offshore wind energy facilities (OWFs) currently deployed, their effects on the marine environment are speculative. Using the available scientific literature concerning appropriate analogs, including fixed-bottom OWFs, land-based wind energy facilities, wave and tidal energy devices, and oil and gas platforms, we conducted a qualitative systematic review to estimate the potential environmental effects of deepwater, floating OWFs during operation, as well as potential mitigation measures to address some of the effects. We evaluated six categories of potential effects: changes to atmospheric and oceanic dynamics due to energy removal and modifications, electromagnetic field effects on marine species from power cables, habitat alterations to benthic and pelagic fish and invertebrate communities, underwater noise effects on marine species, structural impediments to wildlife, and changes to water quality. Our synthesis of 89 articles selected for the review suggests that many of these potential effects could be mitigated to pose a low risk to the marine environment if developers adopt appropriate mitigation strategies and best-practice protocols. This review takes the necessary first steps in summarizing the available information on the potential environmental effects of deepwater, floating OWFs and can serve as a reference document for marine scientists and engineers, the energy industry, permitting agencies and regulators of the energy industry, project developers, and concerned stakeholders such as coastal residents, conservationists, and fisheries

    Scenarios for Offshore Wind Power Production for Central California Call Areas

    Get PDF
    In response to the growing interest in offshore wind energy development in California, the U.S. Bureau of Ocean Energy Management delineated three Call Areas for potential leasing. This study provides a comprehensive characterization and comparison of offshore wind power potential within the two Central California Call Areas (Diablo Canyon and Morro Bay) using 12-and 15-MW turbines under different inter-turbine spacing and wind farm size scenarios. Our analysis shows similar daily and seasonal patterns of wind power produced within the Call Areas, which peak in spring and during evening hours. Per-turbine power production is higher in the Morro Bay Call Area due to slightly higher hub-height wind speeds, whereas total power production is higher in the Diablo Canyon Call Area due to its larger size. Turbine type had a negligible impact on average power production per-unit-area because while larger turbines produce more power, they require greater inter-turbine spacing. Combined power production from the two fully built out Call Areas could equal nearly a quarter of California\u27s current annual electrical energy production. A commercial-scale wind farm with a realized power output of 960 MW would require a footprint of at least half of the Morro Bay Call Area or at least a quarter of the Diablo Canyon Call Area. These results provide guidance on offshore wind development over the Central California Coast, and the framework demonstrated here could be applied to other wind data sets in other regions

    Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast

    Get PDF
    In the United States, Central California has gained significant interest in offshore wind energy due to its strong winds and proximity to existing grid connections. This study provides a comprehensive evaluation of near-surface wind datasets in this region, including satellite-based observations (QuikSCAT, ASCAT, and CCMP V2.0), reanalysis (NARR and MERRA), and regional atmospheric models (WRF and WIND Toolkit). This work highlights spatiotemporal variations in the performance of the respective datasets in relation to in-situ buoy measurements using error metrics over both seasonal and diurnal time scales. The two scatterometers(QuikSCAT and ASCAT) showed the best overall performance, albeit with significantly less spatial and temporal resolution relative to other datasets. These datasets only slightly outperformed the next best dataset (WIND Toolkit), which has significantly greater temporal and spatial resolution as well as estimates of winds aloft. Considering tradeoffs between spatiotemporal resolution of the underlying datasets, error metrics relative to in-situ measurements, and the availability of data aloft, the WIND Toolkit appears to be the best dataset for this region. The framework and tradeoff analysis this research developed and demonstrated to assess offshore wind datasets can be applied in other regions where offshore wind energy is being considered

    Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton

    Get PDF
    It is widely accepted that alkaline phosphatase activity (APA) is an efficient indicator of phosphate limitation in freshwater phytoplankton communities. In this study, we investigated whether the response in APA to phosphate limitation differs among the taxa in a mixed phytoplankton assemblage. We used the new enzyme-labeled fluorescence (ELF) technique, which allows microscopic detection of phosphate limitation in individual cells of multiple species. The most prominent findings of this study were that alkaline phosphatase (AP) was induced in many, but not all taxa and that different taxa, as well as different cells within a single taxon, experienced different degrees of phosphate stress under the same environmental conditions. Our approach was to manipulate the limiting nutrient in a natural freshwater phytoplankton community by incubating lake water in the laboratory. We induced nitrogen (N) or phosphate limitation through additions of inorganic nutrients. Both the ELF assay and bulk APA indicated that the lake phytoplankton were not phosphate limited at the start of the experiment. During the experiment, several chlorophyte taxa (e.g., Eudorina and an unidentified solitary spiny coccoid) were driven to phosphate limitation when inorganic N was added, as evidenced by a higher percentage of ELF-labeled cells relative to controls, whereas other chlorophyte taxa such as Actinastrum and Dicryosphaerium were not phosphate stressed under these conditions. In the phosphate-limited treatments, little or no ELF labeling was observed in any cyanobacterial taxa. Furthermore, all taxa observed after the ELF labeling procedure (>10-mum fraction) were labeled with ELF at least on one occasion, demonstrating the wide applicability of the ELF method. By using ELF labeling in tandem with bulk APA, the resolution and analysis of phosphate limitation was increased, allowing the identification of specific phosphate-stressed taxa

    Importance of Suspended Particulates in Riverine Delivery of Bioavailable Nitrogen to Coastal Zones

    Get PDF
    Total nitrogen (TN) loadings in riverine sediments and their coastal depocenters were compared for Il river systems worldwide to assess the potential impact of riverine particulates on coastal nitrogen budgets. Strong relationships between sediment specific surface area and TN allow these impacts to be estimated without the intense sampling normally required to achieve such budgets. About half of the systems showed higher nitrogen loadings in the riverine sediments than those from the coastal depocenter. In spite of uncertainties, these comparisons indicate that large, turbid rivers, such as the Amazon, Huanghe, and the Mississippi, deliver sediments that in turn release significant or major fractions of the total riverine nitrogen delivery. Riverine particulates must therefore be considered an essential factor in watershed nutrient loading to coastal ecosystems and may affect delivered nutrient ratios as well as total nutrient loading. The relative importance of particulate versus dissolved delivery has decreased over recent decades in the Mississippi as a result of damming and fertilizer use in the watershed

    Spatial and Temporal Variation of Offshore Wind Power and its Values Along the Central California Coast

    Get PDF
    The analysis of the spatiotemporal variability of wind power remains limited during the planning stage of an offshore wind farm. This study provides a framework to investigate how offshore wind power varies along the Central California Coast over diurnal and seasonal time scales, which is critical for reliability and functionality of the grid system. We find that offshore wind power in this region peaks during evening hours across all seasons and maximizes in spring and summer. The timing of peak offshore wind power production better aligns with that of peak demand across California than solar and land-based wind power production, highlighting its potential to fill the supply gap when demand is high and power production from other renewable energy sources is low. We further assess the value of offshore wind power using demand-based and wholesale market metrics. Both metrics indicate high potential value of offshore wind power over most areas in this region. Finally, we show that the estimate of power production is significantly biased when using mean wind speeds that do not account for temporal variability, leading to potentially inaccurate predictions about locations that are expected to produce the most power. These results reiterate the importance in considering spatiotemporal variability in wind power for accurately calculating the value of offshore wind development
    corecore