6 research outputs found

    Serotonin transporters upregulate with chronic cocaine use

    No full text
    Cocaine potently inhibits serotonin (5-HT) reuptake in cell bodies and at nerve terminals and 5-HT has been implicated as a modulator of dopaminergic neurotransmission. Chronic use of cocaine may lead to a ‘serotonin-deficit’ form of 5-HT dysregulation. We have examined the status of the 5-HT transporter (SERT) using ligand binding and autoradiographic methods in subgroups of cocaine overdose deaths. Quantitative autoradiography of [ 125I]RTI-55 was used to map and measure the effect of chronic cocaine use on SERT densities in the striatum, substantia nigra, amygdala, and adjacent paralimbic cortical areas of cocaine overdose (CO) victims with and without preterminal evidence of excited delirium (ED). SERT densities were elevated in the nucleus accumbens and throughout the anterior and posterior sectors of striatum in CO victims compared with age-matched and drug-free control subjects. In contrast, SERT densities were increased significantly in the anterior striatum, but not the posterior sectors in ED victims. Significant elevations in SERT were measured in the orbitofrontal gyrus (Brodmann area 11), the anterior portion of the insular cortex and the cingulate gyrus (Brodmann area 24) in CO and ED victims. Saturation binding site analysis demonstrated an increase in the density of RTI-55 binding sites with no change in the affinity of the radioligand for the SERT. Chronic cocaine exposure upregulated SERT densities in the substantia nigra of the CO, but not ED victims. The lack of SERT upregulation in the substania nigra and posterior striatum suggests the possibility of a distinct phenotype for fatal ED victims that exhibited an acute onset of bizarre and violent behavior prior to death. Adaptive changes in the SERT densities may contribute to depressed mood and drug craving associated with acute cocaine abstinence

    D3 Dopamine and Kappa Opioid Receptor Alterations in Human Brain of Cocaine-overdose Victims

    No full text
    Cocaine is thought to be addictive because chronic use leads to molecular adaptations within the mesolimbic dopamine (DA) circuitry, which affects motivated behavior and emotion. Although the reinforcing effects of cocaine are mediated primarily by blockade of DA uptake, reciprocal signaling between DA and endogenous opioids has important implications for understanding cocaine dependence. We have used in vitro autoradiography and ligand binding to map D3 DA and kappa opioid receptors in the human brains of cocaine‐overdose victims. The number of D3 binding sites was increased one‐ to threefold over the nucleus accumbens and ventromedial sectors of the caudate and putamen from cocaine‐overdose victims, as compared to age‐matched and drug‐free control subjects. D3 receptor/cyclophilin mRNA ratios in the nucleus accumbens were increased sixfold in cocaine‐overdose victims over control values, suggesting that cocaine exposure also affects the expression of D3 receptor mRNA. The number of kappa opioid receptors in the nucleus accumbens and other corticolimbic areas from cocaine fatalities was increased twofold as compared to control values. Cocaine‐overdose victims exhibiting preterminal excited delirium had a selective upregulation of kappa receptors measured also in the amygdala. Understanding the complex regulatory profiles of DA and opioid synaptic markers that occur with chronic misuse of cocaine may suggest multitarget strategies for treating cocaine dependence

    Medical Complications of Drug Abuse

    No full text

    Neurochemistry of Drug Abuse

    No full text
    corecore