3,976 research outputs found

    Ion beam sputter etching

    Get PDF
    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate

    Undercutting of defects in thin film protective coatings on polymer surfaces exposed to atomic oxygen

    Get PDF
    Protection for polymeric surfaces is needed to make them durable in the low Earth orbital environment, where oxidation by atomic oxygen is the predominant failure mechanism. Thin film coatings of oxides such as silicon dioxide are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies occurring during the deposition process, handling, or micrometeoroid and debris bombardment in low Earth orbit. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of silicon dioxide on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface

    A fully-integrated 1.8-V, 2.8-W, 1.9-GHz, CMOS power amplifier

    Get PDF
    This paper demonstrated the first 2-stage, 2.8W, 1.8V, 1.9GHz fully-integrated DAT power amplifier with 50Ω input and output matching using 0.18Όm CMOS transistors. It has a small-signal gain of 27dB. The amplifier provides 2.8W of power into a 50Ω load with a PAE of 50%

    40 GHz Monolithic Grid Amplifier

    Get PDF
    A 36-element monolithic grid amplifier has been fabricated. The peak gain is 4 dB at 40 GHz with a 3-dB bandwidth of 800 MHz. We discuss the design and measurements for the monolithic grid amplifier. The grid includes base stabilizing capacitors which result in a highly stable grid. This is the first report of a successful monolithic grid amplifier

    Galactic Globular Cluster Metallicity Scale from the Calcium Triplet. II. Rankings, Comparisons and Puzzles

    Get PDF
    We compare our compilation of the W' calcium index for 71 Galactic globular clusters to the widely used Zinn and West (1984 ApJS, 55, 45) [Fe/H] scale and to Carretta and Gratton's (1997 A&A Supplement 121, 95) scale from high-dispersion spectra analyzed with Kurucz (1992, private communication) model atmospheres. We find our calcium ranking to be tightly correlated with each comparison set, in a non-linear and a linear fashion, respectively. By combining our calcium index information with the Zinn and West ranking, we are able to rank the globular clusters in our sample with a typical precision of +/- 0.05 dex for [Fe/H] < -0.5 on the Zinn and West scale; for clusters more metal rich than this, the ranking is less precise. The significant differences between these metallicity scales raise important questions about our understanding of Galactic formation and chemical enrichment processes. Furthermore, in spite of the apparent improvement in metallicity ranking for the Galactic globular clusters that results from our addition of information from the Ca II triplet lines to the potpourri of other metallicity indicators, caution -- perhaps considerable -- may be advisable when using W' as a surrogate for metallicity, especially for systems where ranges in age and metallicity are likely.Comment: To appear in the August 1997 issue of PASP Also available at http://www.hia.nrc.ca/eprints.htm

    The NASA atomic oxygen effects test program

    Get PDF
    The NASA Atomic Oxygen Effects Test Program was established to compare the low earth orbital simulation characteristics of existing atomic oxygen test facilities and utilize the collective data from a multitude of simulation facilities to promote understanding of mechanisms and erosion yield dependence upon energy, flux, metastables, charge, and environmental species. Four materials chosen for this evaluation include Kapton HN polyimide, FEP Teflon, polyethylene, and graphite single crystals. The conditions and results of atomic oxygen exposure of these materials is reported by the participating organizations and then assembled to identify degrees of dependency of erosion yields that may not be observable from any single atomic oxygen low earth orbital simulation facility. To date, the program includes 30 test facilities. Characteristics of the participating test facilities and results to date are reported

    Chandra Observations of 1RXS J141256.0+792204 (Calvera)

    Full text link
    We report the results of a 30 ks Chandra ACIS-S observation of the isolated compact object 1RXS J141256.0+792204 (Calvera). The X-ray spectrum is adequately described by an absorbed neutron star hydrogen atmosphere model with an effective temperature at infinity of 88.3 +/- 0.8 eV and radiation radius at infinity of 4.1 +/- 0.1 km/kpc. The best-fit blackbody spectrum yields parameters consistent with previous measurements; although the fit itself is not statistically acceptable, systematic uncertainties in the pile-up correction may contribute to this. We find marginal evidence for narrow spectral features in the X-ray spectrum between 0.3 and 1.0 keV. In one interpretation, we find evidence at 81%-confidence for an absorption edge at 0.64 (+0.08) (-0.06) keV with an equivalent width of ~70 eV; if this feature is real, it is reminiscent of features seen in the isolated neutron stars RX J1605.3+3249, RX J0720.4-3125, and 1RXS J130848.6+212708 (RBS 1223). In an alternative approach, we find evidence at 88%-confidence for an unresolved emission line at energy 0.53 +/- 0.02 keV, with an equivalent width of ~28 eV; the interpretation of this feature, if real, is uncertain. We search for coherent pulsations up to the Nyquist frequency of 1.13 Hz and set an upper limit of 8.0% rms on the strength of any such modulation. We derive an improved position for the source and set the most rigorous limits to-date on any associated extended emission on arcsecond scales. Our analysis confirms the basic picture of Calvera as the first isolated compact object in the ROSAT/Bright Source Catalog discovered in six years, the hottest such object known, and an intriguing target for multiwavelength study.Comment: Submitted to ApJ. AASTeX, 19 pages, 2 figure

    Millimeter-Wave Diffraction by a Photo-Induced Plasma Grating

    Get PDF
    Optical gratings are used extensively for beamsteering in the visible and IR range of the spectrum. Change in the dielectric permittivity of a semiconductor medium resulting from the excitation of a nonequilibrium electron-hole plasma makes it possible to extend this technique to MMW frequencies. A photo-induced plasma grating (PIPG) can be easily rewritten by changing the illumination pattern. So this technique can be used in optically controllable MMW antennas. Initial experimental work studied the diffraction of MMW propagating along a dielectric waveguide containing a PIPG. This paper reports on the diffraction of MMW propagating in free space, steered by the PIPG
    • 

    corecore