6 research outputs found

    The Histone H3 K4me3, K27me3, and K27ac Genome-Wide Distributions Are Differently Influenced by Sex in Brain Cortexes and Gastrocnemius of the Alzheimer's Disease PSAPP Mouse Model

    Get PDF
    Background: Women represent the majority of Alzheimer's disease patients and show typical symptoms. Genetic, hormonal, and behavioral mechanisms have been proposed to explain sex differences in dementia prevalence. However, whether sex differences exist in the epigenetic landscape of neuronal tissue during the progression of the disease is still unknown. Methods: To investigate the differences of histone H3 modifications involved in transcription, we determined the genome-wide profiles of H3K4me3, H3K27ac, and H3K27me3 in brain cortexes of an Alzheimer mouse model (PSAPP). Gastrocnemius muscles were also tested since they are known to be different in the two sexes and are affected during the disease progression. Results: Correlation analysis distinguished the samples based on sex for H3K4me3 and H3K27me3 but not for H3K27ac. The analysis of transcription starting sites (TSS) signal distribution, and analysis of bounding sites revealed that gastrocnemius is more influenced than brain by sex for the three histone modifications considered, exception made for H3K27me3 distribution on the X chromosome which showed sex-related differences in promoters belonging to behavior and cellular or neuronal spheres in mice cortexes. Conclusions: H3K4me3, H3K27ac, and H3K27me3 signals are slightly affected by sex in brain, with the exception of H3K27me3, while a higher number of differences can be found in gastrocnemius

    Sex differences in response to short-term high fat diet in mice

    No full text
    BackgroundConsumption of high-fat diet (HF) leads to hyperphagia and increased body weight in male rodents. Female rodents are relatively resistant to hyperphagia and weight gain in response to HF, in part via effects of estrogen that suppresses food intake and increases energy expenditure. However, sex differences in energy expenditure and activity levels with HF challenge have not been systemically described. We hypothesized that, in response to short-term HF feeding, female mice will have a higher energy expenditure and be more resistant to HF-induced hyperphagia than male mice.MethodsSix-week-old male and female C57BL/6 J mice were fed either low fat (LF, 10% fat) or moderate HF (45% fat) for 5 weeks, and energy expenditure, activity and meal pattern measured using comprehensive laboratory animal monitoring system (CLAMS).ResultsAfter 5 weeks, HF-fed male mice had a significant increase in body weight and fat mass, compared with LF-fed male mice. HF-fed female had a significant increase in body weight compared with LF-fed female mice, but there was no significant difference in fat mass. HF-fed male mice had lower energy expenditure compared to HF-fed female mice, likely due in part to reduced physical activity in the light phase. HF-fed male mice also had increased energy intake in the dark phase compared to LF-fed male mice and a reduced response to exogenous cholecystokinin-induced inhibition of food intake. In contrast, there was no difference in energy intake between LF-fed and HF-fed female mice.ConclusionsThe data show that female mice are generally protected from short-term HF-induced alterations in energy balance, possibly by maintaining higher energy expenditure and an absence of hyperphagia. However, HF-feeding in male mice induced weight and fat mass gain and hyperphagia. These findings suggest that there is a sex difference in the response to short-term HF-feeding in terms of both energy expenditure and control of food intake

    Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet

    No full text
    corecore