1,133 research outputs found

    Simultaneous determination of the stroke volume and the left ventricular residual fraction with the fiberoptic- and thermodilution method

    Get PDF
    Simultaneous measurements of the concentration of dye by a fiberoptic catheter and of the temperature by a thermistor catheter were obtained in dogs. No significant difference for cardiac output and stroke volume was found. The slightly but significant higher residual fraction by thermodilution than by fiberoptic technique is caused by cold transfer between ventricular myocardium and cavity. It becomes evident after the fifth bea

    Nanofibers: Friend or Foe?

    Get PDF
    Since the early 1990s nanoïŹbers, particularly those of a carbonaceous content [1] have received heightened interest due to their advantageous physico-chemical characteristics (e.g., high strength, stiffness, semi-conductor, increased thermal conductivity and one of the highest Young’s modulus [2]).[...

    Long-term (10 years) prognostic value of a normal thallium-201 myocardial exercise scintigraphy in patients with coronary artery disease documented by angiography

    Get PDF
    In order to assess the prognostic significance of normal exercise thallium-210 myocardial scintigraphy in patients with documented coronary artery disease, we studied the incidence of cardiac death and non-fatal myocardial infarction in 69 symptomatic patients without prior Q wave myocardial infarction, who demonstrated one or more significant coronary lesions (stenosis ≀70%) on an angiogram performed within 3 months of scintigraphy (Group 1). These patients were compared to a second group of 136 patients with an abnormal exercise scintigram, defined by the presence of reversible defect(s) and angiographically proven coronary artery disease (Group 2), and to a third group of 102 patients with normal exercise scintigraphy without significant coronary lesions (stenosis ≄30%) or with normal coronary angiography (Group 3). In contrast to coronary lesions observed in Group 2, patients in Group I presented more frequently with single- vessel disease (83% vs 35%, P>0·0001) and with more distal lesions (55% vs 23%, P>0·0001). Over a mean follow-up period of 8·6 years, one fatal and eight non-fatal cases of myocardial infarction were observed in Group 1. The majority of patients in Group 1 were treated medically: only 24 (35%) underwent myocardial revascularization, usually by coronary angioplasty. There was no significant difference in the incidence of combined major cardiac events (cardiac death, non-fatal myocardial infarction) in patients with normal exercise scintigraphy, with or without documented coronary artery disease (Groups 1 and 3), while the incidence was higher in Group 2. However, while the mortality remained very low in Group 1, the incidence of non-fatal myocardial infraction was not different from that of Group 2, where most patients underwent revascularization procedures. In conclusion, patients with coronary artery disease and a normal exercise thallium-201 myocardial scintigram usually have mild coronary lesions (single-vessel disease, distal location) and good long-term prognosis, with a low incidence of cardiac deat

    A NWB-based dataset and processing pipeline of human single-neuron activity during a declarative memory task

    Get PDF
    A challenge for data sharing in systems neuroscience is the multitude of different data formats used. Neurodata Without Borders: Neurophysiology 2.0 (NWB:N) has emerged as a standardized data format for the storage of cellular-level data together with meta-data, stimulus information, and behavior. A key next step to facilitate NWB:N adoption is to provide easy to use processing pipelines to import/export data from/to NWB:N. Here, we present a NWB-formatted dataset of 1863 single neurons recorded from the medial temporal lobes of 59 human subjects undergoing intracranial monitoring while they performed a recognition memory task. We provide code to analyze and export/import stimuli, behavior, and electrophysiological recordings to/from NWB in both MATLAB and Python. The data files are NWB:N compliant, which affords interoperability between programming languages and operating systems. This combined data and code release is a case study for how to utilize NWB:N for human single-neuron recordings and enables easy re-use of this hard-to-obtain data for both teaching and research on the mechanisms of human memory

    A novel technique to determine the cell type specific response within an in vitro co-culture model via multi-colour flow cytometry

    Get PDF
    Determination of the cell type specific response is essential towards understanding the cellular mechanisms associated with disease states as well as assessing cell-based targeting of effective therapeutic agents. Recently, there have been increased calls for advanced in vitro multi-cellular models that provide reliable and valuable tools correlative to in vivo. In this pursuit the ability to assess the cell type specific response is imperative. Herein, we report a novel approach towards resolving each specific cell type of a multi-cellular model representing the human lung epithelial tissue barrier via multi-colour flow cytometry (FACS). We proved via ≀ five-colour FACS that the manipulation of this in vitro model allowed each cell type to be resolved with no impact upon cell viability. Subsequently, four-colour FACS verified the ability to determine the biochemical effect (e.g. oxidative stress) of each specific cell type. This technique will be vital in gaining information upon cellular mechanics when using next-level, multi- cellular in vitro strategies

    A newly discovered subglacial lake in East Antarctica likely hosts a valuable sedimentary record of ice and climate change

    Get PDF
    The Princess Elizabeth Land sector of the East Antarctic Ice Sheet is a significant reservoir of grounded ice and is adjacent to regions that experienced great change during Quaternary glacial cycles and Pliocene warm episodes. The existence of an extensive subglacial water system in Princess Elizabeth Land (to date only inferred from satellite imagery) bears the potential to significantly impact the thermal and kinematic conditions of the overlying ice sheet. We confirm the existence of a major subglacial lake, herein referred to as Lake Snow Eagle (LSE), for the first time using recently acquired aerogeophysical data. We systematically investigated LSE’s geological characteristics and bathymetry from two-dimensional geophysical inversion models. The inversion results suggest that LSE is located along a compressional geologic boundary, which provides reference for future characterization of the geologic and tectonic context of this region. We estimate LSE to be ~42 km in length and 370 km2 in area, making it one of the largest subglacial lakes in Antarctica. Additionally, the airborne ice-penetrating radar observations and geophysical inversions reveal a layer of unconsolidated water-saturated sediment around and at the bottom of LSE, which—given the ultralow rates of sedimentation expected in such environments—may archive valuable records of paleoenvironmental changes and the early history of East Antarctic Ice Sheet evolution in Princess Elizabeth Land

    Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture

    Get PDF
    Cellulose nanofibers are an attractive component of a broad range of nanomaterials. Their intriguing mechanical properties and low cost, as well as the renewable nature of cellulose make them an appealing alternative to carbon nanotubes (CNTs), which may pose a considerable health risk when inhaled. Little is known, however, concerning the potential toxicity of aerosolized cellulose nanofibers. Using a 3D in vitro triple cell coculture model of the human epithelial airway barrier, it was observed that cellulose nanofibers isolated from cotton (CCN) elicited a significantly (p < 0.05) lower cytotoxicity and (pro-)inflammatory response than multiwalled CNTs (MWCNTs) and crocidolite asbestos fibers (CAFs). Electron tomography analysis also revealed that the intracellular localization of CCNs is different from that of both MWCNTs and CAFs, indicating fundamental differences between each different nanofibre type in their interaction with the human lung cell coculture. Thus, the data shown in the present study highlights that not only the length and stiffness determine the potential detrimental (biological) effects of any nanofiber, but that the material used can significantly affect nanofiber–cell interactions

    Polydopamine nanoparticle doped nanofluid for solar thermal energy collector efficiency increase

    Get PDF
    Polydopamine can form black nanoparticles and has recently been gaining attention due to its extraordinary heating properties upon excitation with light. Herein, polydopamine hybrid nanoparticles are synthesized in different sizes and subsequently added to a solar fluid to analyze heating ability. The solar fluids with the differently sized hybrid polydopamine particles are compared to a solar fluid containing food coloring (i.e., micrometer‐sized soot particles, similar to India Ink) and silver nanoparticles. The hybrid polydopamine nanoparticles are found to heat more efficiently than silver nanoparticles or food coloring, respectively. In addition, no hybrid polydopamine nanoparticle deposits are found in the direct absorption solar collector in comparison to the solar fluids doped with silver nanoparticles or food coloring. Thus, this work shows that hybrid polydopamine nanoparticles are promising candidates to increase the efficiency of solar fluids

    A Comparative Study of Different In Vitro Lung Cell Culture Systems to Assess the Most Beneficial Tool for Screening the Potential Adverse Effects of Carbon Nanotubes

    Get PDF
    To determine the potential inhalatory risk posed by carbon nanotubes (CNTs), a tier-based approach beginning with an in vitro assessment must be adopted. The purpose of this study therefore was to compare 4 commonly used in vitro systems of the human lung (human blood monocyte-derived macrophages [MDM] and monocyte-derived dendritic cells [MDDC], 16HBE14o- epithelial cells, and a sophisticated triple cell co-culture model [TCC-C]) via assessment of the biological impact of different CNTs (single-walled CNTs [SWCNTs] and multiwalled CNTs [MWCNTs]) over 24h. No significant cytotoxicity was observed with any of the cell types tested, although a significant (p < .05), dose-dependent increase in tumor necrosis factor (TNF)-α following SWCNT and MWCNT exposure at concentrations up to 0.02mg/ml to MDM, MDDC, and the TCC-C was found. The concentration of TNF-α released by the MDM and MDDC was significantly higher (p < .05) than the TCC-C. Significant increases (p < .05) in interleukin (IL)-8 were also found for both 16HBE14o- epithelial cells and the TCC-C after SWCNTs and MWCNTs exposure up to 0.02mg/ml. The TCC-C, however, elicited a significantly (p < .05) higher IL-8 release than the epithelial cells. The oxidative potential of both SWCNTs and MWCNTs (0.005-0.02mg/ml) measured by reduced glutathione (GSH) content showed a significant difference (p < .05) between each monoculture and the TCC-C. It was concluded that because only the co-culture system could assess each endpoint adequately, that, in comparison with monoculture systems, multicellular systems that take into consideration important cell type-to-cell type interactions could be used as predictive in vitro screening tools for determining the potential deleterious effects associated with CNT

    A Collaboratory, Multi-Disciplinary Approach to Risk Mitigation during HIV Analytical Treatment Interruption

    Get PDF
    Analytic treatment interruptions (ATIs) are currently the standard for assessing the impact of experimental interventions aimed at inducing sustained antiretroviral therapy (ART)-free remission in trials related to HIV cure. ATIs are associated with substantial risk to both study participants and their sexual partner(s). Two documented HIV transmissions occurring in the context of ATIs have been recently reported, but recommendations for mitigating the risk of such events during ATIs are limited. We outline a practical approach to risk mitigation during ATI studies and describe strategies we are utilising in an upcoming clinical trial that may be applicable to other centres
    • 

    corecore